The role of unbound oligomers in the nucleation and growth of electrodeposited polypyrrole and method for preparing high strength, high conductivity films


Autoria(s): Zheng, Wen; Razal, Joselito M; Spinks, Geoffrey M; Truong, Van-Tan; Whitten, Philip G; Wallace, Gordon G
Data(s)

01/01/2012

Resumo

Polypyrrole is a material with immensely useful properties suitable for a wide range of electrochemical applications, but its development has been hindered by cumbersome manufacturing processes. Here we show that a simple modification to the standard electrochemical polymerization method produces polypyrrole films of equivalently high conductivity and superior mechanical properties in one-tenth of the polymerization time. Preparing the film as a series of electrodeposited layers with thorough solvent washing between layering was found to produce excellent quality films even when layer deposition was accelerated by high current. The washing step between the sequentially polymerized layers altered the deposition mechanism, eliminating the typical dendritic growth and generating nonporous deposits. Solvent washing was shown to reduce the concentration of oligomeric species in the near-electrode region and hinder the three-dimensional growth mechanism that occurs by deposition of secondary particles from solution. As artificial muscles, the high density sequentially polymerized films produced the highest mechanical work output yet reported for polypyrrole actuators.

Identificador

http://hdl.handle.net/10536/DRO/DU:30061330

Idioma(s)

eng

Publicador

American Chemical Society

Relação

http://dro.deakin.edu.au/eserv/DU:30061330/razal-roleofunbound-2012.pdf

http://dx.doi.org/10.1021/la301701g

Palavras-Chave #Unbound Oligomers #Electrodeposited polypyrrole #High conductivity films
Tipo

Journal Article