One-Step Wet-Spinning Process of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Fibers and the Origin of Higher Electrical Conductivity


Autoria(s): Jalili, Rouhollah; Razal, Joselito M; Innis, Peter C; Wallace, Gordon G
Data(s)

01/01/2011

Resumo

A simplified wet-spinning process for the production of continuous poly (3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) fibers is reported. Conductivity enhancement of PEDOT:PSS fibers up to 223 S cm−1 has been demonstrated when these fibers are exposed to ethylene glycol as a post-synthesis processing step. In a new spinning approach it is shown that by employing a spinning formulation consisting of an aqueous blend of PEDOT:PSS and poly(ethlylene glycol), the need for post-spinning treatment with ethylene glycol is eliminated. With this approach, 30-fold conductivity enhancements from 9 to 264 S cm−1 are achieved with respect to an untreated fiber. This one-step approach also demonstrates a significant enhancement in the redox properties of the fibers. These improvements are attributed to an improved molecular ordering of the PEDOT chains in the direction of the fiber axis and the consequential enrichment of linear (or expanded-coil like) conformation to preference bipolaronic electronic structures as evidenced by Raman spectroscopy, solid-state electron spin resonance (ESR) and in situ electrochemical ESR studies.

Identificador

http://hdl.handle.net/10536/DRO/DU:30061334

Idioma(s)

eng

Publicador

Wiley-VCH Verlag

Relação

http://dro.deakin.edu.au/eserv/DU:30061334/razal-onestepwet-2011.pdf

http://dx.doi.org/10.1002/adfm.201100785

Direitos

2011, WILEY-VCH Verlag

Palavras-Chave #PEDOT:PSS #Conductive fibers #Wet-spinning #Raman spectroscopy #Electron spin resonance spectroscopy
Tipo

Journal Article