937 resultados para Operating profitability
Resumo:
OBJECTIVE: To assess the usefulness of corneal esthesiometry for screening diabetic retinopathy. METHODS: A cross-sectional study was carried out comprising 575 patients attending a diabetic retinopathy-screening program in the city of São Paulo. Corneal esthesiometry was assessed with the Cochet-Bonnet esthesiometer. The presence of diabetic retinopathy was detected with indirect fundoscopy. The validity of corneal esthesiometry in identifying diabetic retinopathy was evaluated by the Receiver Operating Characteristic (ROC) curve. RESULTS: Sensitivity and specificity analyses of the corneal esthesiometry for detecting the stages of diabetic retinopathy using different cut-offs showed values less than 80%. The best indices (72.2% sensitivity and 57.4% specificity) were obtained for the identification of patients with proliferative diabetic retinopathy. CONCLUSIONS: In the study series, corneal esthesiometry was not a good indicator of diabetic retinopathy.
Resumo:
In this paper, a novel mixed-integer nonlinear approach is proposed to solve the short-term hydro scheduling problem in the day-ahead electricity market, considering not only head-dependency, but also start/stop of units, discontinuous operating regions and discharge ramping constraints. Results from a case study based on one of the main Portuguese cascaded hydro energy systems are presented, showing that the proposedmixed-integer nonlinear approach is proficient. Conclusions are duly drawn. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a direct power control (DPC) for three-phase matrix converters operating as unified power flow controllers (UPFCs). Matrix converters (MCs) allow the direct ac/ac power conversion without dc energy storage links; therefore, the MC-based UPFC (MC-UPFC) has reduced volume and cost, reduced capacitor power losses, together with higher reliability. Theoretical principles of direct power control (DPC) based on sliding mode control techniques are established for an MC-UPFC dynamic model including the input filter. As a result, line active and reactive power, together with ac supply reactive power, can be directly controlled by selecting an appropriate matrix converter switching state guaranteeing good steady-state and dynamic responses. Experimental results of DPC controllers for MC-UPFC show decoupled active and reactive power control, zero steady-state tracking error, and fast response times. Compared to an MC-UPFC using active and reactive power linear controllers based on a modified Venturini high-frequency PWM modulator, the experimental results of the advanced DPC-MC guarantee faster responses without overshoot and no steady-state error, presenting no cross-coupling in dynamic and steady-state responses.
Resumo:
This paper addresses the problem of energy resources management using modern metaheuristics approaches, namely Particle Swarm Optimization (PSO), New Particle Swarm Optimization (NPSO) and Evolutionary Particle Swarm Optimization (EPSO). The addressed problem in this research paper is intended for aggregators’ use operating in a smart grid context, dealing with Distributed Generation (DG), and gridable vehicles intelligently managed on a multi-period basis according to its users’ profiles and requirements. The aggregator can also purchase additional energy from external suppliers. The paper includes a case study considering a 30 kV distribution network with one substation, 180 buses and 90 load points. The distribution network in the case study considers intense penetration of DG, including 116 units from several technologies, and one external supplier. A scenario of 6000 EVs for the given network is simulated during 24 periods, corresponding to one day. The results of the application of the PSO approaches to this case study are discussed deep in the paper.
Using demand response to deal with unexpected low wind power generation in the context of smart grid
Resumo:
Demand response is assumed an essential resource to fully achieve the smart grids operating benefits, namely in the context of competitive markets. Some advantages of Demand Response (DR) programs and of smart grids can only be achieved through the implementation of Real Time Pricing (RTP). The integration of the expected increasing amounts of distributed energy resources, as well as new players, requires new approaches for the changing operation of power systems. The methodology proposed aims the minimization of the operation costs in a smart grid operated by a virtual power player. It is especially useful when actual and day ahead wind forecast differ significantly. When facing lower wind power generation than expected, RTP is used in order to minimize the impacts of such wind availability change. The proposed model application is here illustrated using the scenario of a special wind availability reduction day in the Portuguese power system (8th February 2012).
Resumo:
This paper, reports experimental work on the use of new heterogeneous solid basic catalysts for biodiesel production: double oxides of Mg and Al, produced by calcination, at high temperature, of MgAl lamellar structures, the hydrotalcites (HT). The most suitable catalyst system studied are hydrotalcite Mg:Al 2:1 calcinated at 507 degrees C and 700 degrees C, leading to higher values of FAME also in the second reaction stage. One of the prepared catalysts resulted in 97.1% Fatty acids methyl esters (FAME) in the 1st reaction step, 92.2% FAME in the 2nd reaction step and 34% FAME in the 3rd reaction step. The biodiesel obtained in the transesterification reaction showed composition and quality parameters within the limits specified by the European Standard EN 14214. 2.5% wt catalyst/oil and a molar ratio methanol:oil of 9:1 or 12:1 at 60 -65 degrees C and 4 h of reaction time are the best operating conditions achieved in this study. This study showed the potential of Mg/Al hydrotalcites as heterogeneous catalysts for biodiesel production. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper proposes a simulated annealing (SA) approach to address energy resources management from the point of view of a virtual power player (VPP) operating in a smart grid. Distributed generation, demand response, and gridable vehicles are intelligently managed on a multiperiod basis according to V2G user´s profiles and requirements. Apart from using the aggregated resources, the VPP can also purchase additional energy from a set of external suppliers. The paper includes a case study for a 33 bus distribution network with 66 generators, 32 loads, and 1000 gridable vehicles. The results of the SA approach are compared with a methodology based on mixed-integer nonlinear programming. A variation of this method, using ac load flow, is also used and the results are compared with the SA solution using network simulation. The proposed SA approach proved to be able to obtain good solutions in low execution times, providing VPPs with suitable decision support for the management of a large number of distributed resources.
Resumo:
Natural gas industry has been confronted with big challenges: great growth in demand, investments on new GSUs – gas supply units, and efficient technical system management. The right number of GSUs, their best location on networks and the optimal allocation to loads is a decision problem that can be formulated as a combinatorial programming problem, with the objective of minimizing system expenses. Our emphasis is on the formulation, interpretation and development of a solution algorithm that will analyze the trade-off between infrastructure investment expenditure and operating system costs. The location model was applied to a 12 node natural gas network, and its effectiveness was tested in five different operating scenarios.
Resumo:
The main aims of this work are the development and the validation of one generic algorithm to provide the optimal control of small power wind generators. That means up to 40 kW and blades with fixed pitch angle. This algorithm allows the development of controllers to fetch the wind generators at the desired operational point in variable operating conditions. The problems posed by the variable wind intensity are solved using the proposed algorithm. This is done with no explicit measure of the wind velocity, and so no special equipment or anemometer is required to compute or measure the wind velocity.
Resumo:
Mestrado em Radiações Aplicadas às Tecnologias da Saúde. Área de especialização: Imagem Digital com Radiação X.
Resumo:
Mestrado em Radiações Aplicadas às Tecnologias da Saúde. Área de especialização: Proteção contra Radiações.
Resumo:
OBJETIVOS: Nenhum estudo de base populacional foi realizado para mostrar o uso potencial de diagnóstico virológico do vírus rábico. O estudo realizado teve por objetivo estimar parâmetros de acurácia para o isolamento de vírus rábico em célula McCoy, como um método alternativo, e comparar com o uso da célula N2A, considerada método de referência. MÉTODOS: Foi realizado um inquérito em 120 morcegos coletados aleatoriamente, na Mata Atlântica, no Estado de São Paulo. Utilizou-se a reação de imunofluorescência para a detecção do vírus rábico isolado no cérebro desses morcegos, avaliado nos dois sistemas de cultivos celulares. Dois bancos de dados foram formados com os resultados. A análise foi feita com o programa Computer Methods for Diagnosis Tests (CMDT), utilizando a técnica de two-graph-receiver operating characteristic (TG-ROC) para obter os parâmetros de sensibilidade e especificidade, além de outros indicadores, tais como eficácia, valor preditivo positivo, valor preditivo negativo e razão de verossimilhança. RESULTADOS: A célula N2A apresentou 90% de sensibilidade e especificidade, enquanto que a célula McCoy obteve 95% para os mesmos parâmetros. Os valores foram baseados em pontos de cortes otimizados para cada uma das células. CONCLUSÕES: Observou-se que a célula McCoy permite obter estimativas de acurácia superiores aos resultados observados com a célula de N2A, representando um método alternativo eficaz no isolamento do vírus rábico.
Resumo:
In recent decades, all over the world, competition in the electric power sector has deeply changed the way this sector’s agents play their roles. In most countries, electric process deregulation was conducted in stages, beginning with the clients of higher voltage levels and with larger electricity consumption, and later extended to all electrical consumers. The sector liberalization and the operation of competitive electricity markets were expected to lower prices and improve quality of service, leading to greater consumer satisfaction. Transmission and distribution remain noncompetitive business areas, due to the large infrastructure investments required. However, the industry has yet to clearly establish the best business model for transmission in a competitive environment. After generation, the electricity needs to be delivered to the electrical system nodes where demand requires it, taking into consideration transmission constraints and electrical losses. If the amount of power flowing through a certain line is close to or surpasses the safety limits, then cheap but distant generation might have to be replaced by more expensive closer generation to reduce the exceeded power flows. In a congested area, the optimal price of electricity rises to the marginal cost of the local generation or to the level needed to ration demand to the amount of available electricity. Even without congestion, some power will be lost in the transmission system through heat dissipation, so prices reflect that it is more expensive to supply electricity at the far end of a heavily loaded line than close to an electric power generation. Locational marginal pricing (LMP), resulting from bidding competition, represents electrical and economical values at nodes or in areas that may provide economical indicator signals to the market agents. This article proposes a data-mining-based methodology that helps characterize zonal prices in real power transmission networks. To test our methodology, we used an LMP database from the California Independent System Operator for 2009 to identify economical zones. (CAISO is a nonprofit public benefit corporation charged with operating the majority of California’s high-voltage wholesale power grid.) To group the buses into typical classes that represent a set of buses with the approximate LMP value, we used two-step and k-means clustering algorithms. By analyzing the various LMP components, our goal was to extract knowledge to support the ISO in investment and network-expansion planning.
Resumo:
A multilevel negotiation mechanism for operating smart grids and negotiating in electricity markets considers the advantages of virtual power player management.
Resumo:
A marcha é influenciada por um conjunto de factores que resultam da interacção e organização própria de sistemas neurais e mecânicos, entre os quais, da dinâmica músculo-esquelética, da modulação pelos centros nervosos superiores, pela modulação aferente e é, também, assumida como sendo controlada pelo Gerador de Padrão Central (GPC), que se define como um programa central baseado num circuito espinal geneticamente determinado, capaz de produzir um ritmo associado a cada marcha. Apresenta-se como objectivo deste trabalho abordar quais os modelos explicativos para o funcionamento do GPC e qual a evidência científica, que continua a ter muitas divergências.