958 resultados para Multidimensional engine
Resumo:
A number of magnesium alloys show promise as engine block materials. However, a critical issue for the automotive industry is corrosion of the engine block by the coolant and this could limit the use of magnesium engine blocks. This work assesses the corrosion performance of conventional magnesium alloy AZ91D and a recently developed engine block magnesium alloy AM-SC1 in several commercial coolants. Immersion testing, hydrogen evolution measurement, galvanic current monitoring and the standard ASTM D1384 test were employed to reveal the corrosion performance of the magnesium alloys subjected to the coolants. The results show that the tested commercial coolants are corrosive to the magnesium alloys in terms of general and galvanic corrosion. The two magnesium alloys exhibited slightly different corrosion resistance to the coolants with AZ91D being more corrosion resistant than AM-SC1. The corrosivity varied from coolant to coolant. Generally speaking. an oraganic-acid based long life coolant was less corrosive to the magnesium alloys than a traditional coolant. Among the studied commercial coolants. Toyota long, life coolant appeared to be the most promising one. In addition. it was found that potassium fluoride effectively inhibited corrosion of the magnesium alloys in the studied commercial coolants. Both general and galvanic corrosion rates were significantly decreased by addition of KF, and there were no evident side effects on the other engine block materials, such as copper, solder. brass. steel and aluminium alloys, in terms of their corrosion performance. The ASTM D 1384 test further confirmed these results and suggested that Toyota long life coolant with 1%wt KF addition is a promising coolant for magnesium engine blocks.
Resumo:
The magnesium alloy AM-SC1 has been developed as a creep-resistant automotive engine block material. This paper outlines its corrosion performance under laboratory test conditions, considering corrosion on both the external and internal surfaces. This study found that AM-SC1 has a corrosion performance comparable to AZ91 when subjected to an aggressive salt-spray environment or in galvanic-coupling environments. This article further demonstrates that, with the appropriate selection of a commercially available engine coolant, the internal corrosion of AM-SC1 can be maintained at a tolerable level. In addition, internal corrosion resistance can be significantly improved by the addition of fluorides to the coolant solution. It is concluded that AM-SC1 can be successfully used in an engine environment provided that some simple corrosion-prevention strategies are adopted.
Resumo:
This paper describes a relatively simple and quick method for implementing aerodynamic heating models into a finite element code for non-linear transient thermal-structural and thermal-structural-vibrational analyses of a Mach 10 generic HyShot scramjet engine. The thermal-structural-vibrational response of the engine was studied for the descent trajectory from 60 to 26 km. Aerodynamic heating fluxes, as a function of spatial position and time for varying trajectory points, were implemented in the transient heat analysis. Additionally, the combined effect of varying dynamic pressure and thermal loads with altitude was considered. This aero-thermal-structural analysis capability was used to assess the temperature distribution, engine geometry distortion and yielding of the structural material due to aerodynamic heating during the descent trajectory, and for optimising the wall thickness, nose radius of leading edge, etc. of the engine intake. A structural vibration analysis was also performed following the aero-thermal-structural analysis to determine the changes in natural frequencies of the structural vibration modes that occur at the various temperatures associated with the descent trajectory. This analysis provides a unique and relatively simple design strategy for predicting and mitigating the thermal-structural-vibrational response of hypersonic engines. (C) 2006 Elsevier SAS. All rights reserved.
Resumo:
Anaerobic digestion is a multistep process, mediated by a functionally and phylogenetically diverse microbial population. One of the crucial steps is oxidation of organic acids, with electron transfer via hydrogen or formate from acetogenic bacteria to methanogens. This syntrophic microbiological process is strongly restricted by a thermodynamic limitation on the allowable hydrogen or formate concentration. In order to study this process in more detail, we developed an individual-based biofilm model which enables to describe the processes at a microbial resolution. The biochemical model is the ADM1, implemented in a multidimensional domain. With this model, we evaluated three important issues for the syntrophic relationship: (i) is there a fundamental difference in using hydrogen or formate as electron carrier? (ii) Does a thermodynamic-based inhibition function produced substantially different results from an empirical function? and; (iii) Does the physical colocation of acetogens and methanogens follow directly from a general model. Hydrogen or formate as electron carrier had no substantial impact on model results. Standard inhibition functions or thermodynamic inhibition function gave similar results at larger substrate field grid sizes (> 10 mu m), but at smaller grid sizes, the thermodynamic-based function reduced the number of cells with long interspecies distances (> 2.5 mu m). Therefore, a very fine grid resolution is needed to reflect differences between the thermodynamic function, and a more generic inhibition form. The co-location of syntrophic bacteria was well predicted without a need to assume a microbiological based mechanism (e.g., through chemotaxis) of biofilm formation.
Resumo:
This study attempts to assess the role of perceived risk in air passenger behaviour. A survey of 889 respondents is used to investigate a multidimensional concept of perceived risk and to analyse the differences between socio-demographic characteristics regarding passengers' risk assessment. The results indicate that financial risk and temporal risk are the most important in the context of commercial air travel. All perceived risk dimensions differ according gender, age, cultural background, income, previous experience, and reason for travelling. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Digital Songlines is an Australasian CRC for Interaction Design (ACID) project that is developing protocols, methodologies and toolkits to facilitate the collection, education and sharing of indigenous cultural heritage knowledge. The project explores the areas of effective recording, content management and virtual reality delivery capabilities that are culturally sensitive and involve the indigenous custodians, leaders and communities in remote areas of the Australian ‘outback’. It investigates how players in a serious gaming sense can experience Indigenous virtual heritage in a high fidelity fashion with culturally appropriate interface tools. This paper describes a 3D ambient audio quilt designed and implemented specifically for the Digital Songlines software, which is built using the Torque Game Engine. The audio quilt developed provides dynamic ambient fauna and flora sound effects to represent the varying audio environment of the landscape. This provides an authentic contextualised interesting aural experience that can be different each time a location is entered. This paper reports on completed and ongoing research in this area.
Resumo:
Current database technologies do not support contextualised representations of multi-dimensional narratives. This paper outlines a new approach to this problem using a multi-dimensional database served in a 3D game environment. Preliminary results indicate it is a particularly efficient method for the types of contextualised narratives used by Australian Aboriginal peoples to tell their stories about their traditional landscapes and knowledge practices. We discuss the development of a tool that complements rather than supplants direct experience of these traditional knowledge practices.
Resumo:
This paper challenges current practices in the use of digital media to communicate Australian Aboriginal knowledge practices in a learning context. It proposes that any digital representation of Aboriginal knowledge practices needs to examine the epistemology and ontology of these practices in order to design digital environments that effectively support and enable existing Aboriginal knowledge practices in the real world. Central to this is the essential task of any new digital representation of Aboriginal knowledge to resolve the conflict between database and narrative views of knowledge (L. Manovich, 2001). This is in order to provide a tool that complements rather than supplants direct experience of traditional knowledge practices (V. Hart, 2001). This paper concludes by reporting on the recent development of an advanced learning technology that addresses this.