997 resultados para Measurement Campaign
Resumo:
The interference patterns produced by Gaussian-shaped broad-bandwidth femtosecond pulsed laser sources are derived. The interference pattern contains both spatial and temporal properties of laser beam. Interference intensity dependent on the bandwidth of femtosecond laser are given. We demonstrate experimentally both the spatial and the temporal coherence properties of a Ti:sapphire femtosecond pulse laser, as well as its power spectrum by using a pinhole pair.
Resumo:
The degradation of image quality caused by aberrations of projection optics in lithographic tools is a serious problem in optical lithography. We propose what we believe to be a novel technique for measuring aberrations of projection optics based on two-beam interference theory. By utilizing the partial coherent imaging theory, a novel model that accurately characterizes the relative image displacement of a fine grating pattern to a large pattern induced by aberrations is derived. Both even and odd aberrations are extracted independently from the relative image displacements of the printed patterns by two-beam interference imaging of the zeroth and positive first orders. The simulation results show that by using this technique we can measure the aberrations present in the lithographic tool with higher accuracy. (c) 2006 Optical Society of America.
Resumo:
A dilution refrigerator has been constructed capable of producing steady state temperatures less than .075°K. The first part of this work is concerned with the design and construction of this machine. Enough theory is presented to allow one to understand the operation and critical design factors of a dilution refrigerator. The performance of our refrigerator is compared with the operating characteristics of three other dilution refrigerators appearing in the present literature.
The dilution refrigerator constructed was used to measure the nuclear contribution to the low temperature specific heat of a pure, single-crystalline sample of rhenium metal. Measurements were made in magnetic fields from 0 to 12.5 kOe for the temperature range .13°K - .52°K. The second part of this work discusses the results of these experiments. The expected nuclear contribution is not found when the sample is in the superconducting state. This is believed to be due to the long spin-lattice relaxation times in superconductors. In the normal state, for the temperature range studied, the nuclear contribution is given by A/T2 where A = .061 ± .002 millijoules-K/mole. The value of A is found to increase to A = .077 ± .004 millijoules-K/mole when the sample is located in a magnetic field of 12.5 kOe.
From the measured value of A the splitting of the energy levels of the nuclear spin system due to the interaction of the internal crystalline electric field gradients with the nuclear quadrupole moments is calculated. A comparison is made between the predicted and measured magnetic dependence of the specific heat. Finally, predictions are made of future nuclear magnetic resonance experiments which may be performed to check the results obtained by calorimetery here and further, to investigate existing theories concerning the sources of electric field gradients in metals.
Resumo:
As a critical dimension shrinks, the degradation in image quality caused by wavefront aberrations of projection optics in lithographic tools becomes a serious problem. It is necessary to establish a technique for a fast and accurate in situ aberration measurement. We introduce what we believe to be a novel technique for characterizing the aberrations of projection optics by using an alternating phase-shifting mask. The even aberrations, such as spherical aberration and astigmatism, and the odd aberrations, such as coma, are extracted from focus shifts and image displacements of the phase-shifted pattern, respectively. The focus shifts and the image displacements are measured by a transmission image sensor. The simulation results show that, compared with the accuracy of the previous straightforward measurement technique, the accuracy of the coma measurement increases by more than 30% and the accuracy of the spherical-aberration measurement increases by approximately 20%. (c) 2006 Optical Society of America.
Resumo:
In order to measure the diffraction-limit wavefront, we present three types of common-path double-shearing interferometers based on the theory of double shearing. Two pairs of half-aperture or whole-aperture wedge plates are used to introduce opposite tilt to realize the double-shearing function. By comparing the fringe widths in two fields, the marginal wavefront aberration can be obtained. In the paper, we give three different configurations: half-aperture configuration, whole-field configuration and double-interferometer configuration. The half-aperture configuration has the features of high sensitivity, stabilization and easy alignment. For the whole-field configuration, the interference fringes are displayed in two whole fields. Consequently, the divergent or convergent characteristic and aberration types of a wavefront can be identified visually. The whole-field configuration can be changed to the double-interferometer configuration for continuous test. Both small and large wavefront aberrations can be measured by the double-interferometer configuration. The minimum detectable wavefront aberration (W-0)(min) comes to 0.03 lambda. Lastly, we present the experimental results for the three types of double-shearing interferometers.
Resumo:
Thermal resistance and thermal rise-time are two basic parameters that affect most of the performances of a laser diode greatly. By measuring waveforms received after a spectroscope at wavelengths varied step-by-step, the spectrally resolved waveforms can be converted to calculate the thermal rise-time. Basic formulas for the spectrum variation of a laser diode and the measurement set-up by using a Boxcar are described in the paper. As an example, the thermal rise-time of a p-side up packaged short-pulse laser diode was measured by the method to be 390 mu s. The method will be useful in characterizing diode lasers and LID modules in high-power applications. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
As the feature size decreases, degradation of image quality caused by wavefront aberrations of projection optics in lithographic tools has become a serious problem in the low-k1 process. We propose a novel measurement technique for in situ characterizing aberrations of projection optics in lithographic tools. Considering the impact of the partial coherence illumination, we introduce a novel algorithm that accurately describes the pattern displacement and focus shift induced by aberrations. Employing the algorithm, the measurement condition is extended from three-beam interference to two-, three-, and hybrid-beam interferences. The experiments are performed to measure the aberrations of projection optics in an ArF scanner. (C) 2006 Optical Society of America.
Resumo:
We quantitatively study the domain inversion in a RuO2:LiNbO3 crystal wafer by the digital holographic interferometry. The crystal wafer is placed into one arm of a Mach-Zehnder-type interferometer to record a series of holograms. Making use of the angular spectrum backward propagation algorithm, we reconstruct the optical wave field in the crystal plane. The extracted phase difference from the reconstructed optical wave field is a well linear function of the applied external voltage. We deduce that the linear electro-optic coefficient of the detected RuO2:LiNbO3 crystal sample is 9.1x10(-12) m/V. An unexpected phase contrast at the antiparallel domain wall is observed and the influence of the applied external voltage on it is studied in detail. Also the built-in internal field is quantitatively measured as 0.72 kV/mm. (c) 2006 American Institute of Physics.
Resumo:
These minutes report on colloquium on the methodology of radiation measurement under water. The meeting was held on 3-5 January 1957, at the Biological Station, Lunz, Austria. The participants of the colloquium discussed various methodologies of radiation measurements, basic methods such as Secchi Disc and underwater photometer as well as specialist equipment like the absolute radiation apparatus.
Resumo:
As feature size decreases, especially with the use of resolution enhancement technique, requirements for the coma aberrations in the projection lenses of the lithographic tools have become extremely severe. So, fast and accurate in situ measurement of coma is necessary. In the present paper, we present a new method for characterizing the coma aberrations in the projection lens using a phase-shifting mask and a transmission image sensor. By measuring the image positions at multiple NA and partial coherence settings, we are able to extract the coma aberration. The simulation results show that the accuracy of coma measurement increases approximately 20% compared to the previous straightforward measurement technique. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
From the tunneling characteristics of a tin-tin oxide-lead junction, a direct measurement has been made of the energy-gap variation for a superconductor carrying a current in a compensated geometry. Throughout the region investigated – several temperatures near Tc and down to a reduced temperature t = 0.8 –the observed current dependence agrees quite well with predictions based on the Ginzburg-Landau-Gor’kov theory. Near Tc the predicted temperature dependence is also well verified, though deviations are observed at lower temperatures; even for the latter, the data are internally consistent with the temperature dependence of the experimental critical current. At the lowest temperature investigated, t = 0.8, a small “Josephson” tunneling current allowed further a direct measurement of the electron drift velocity at low current densities. From this, a preliminary experimental value of the critical velocity, believed to be the first reported, can be inferred in the basis of Ginzburg-Landau theory. For tin at t = 0.8, we find vc = 87 m/sec. This value does not appear fully consistent with those predicted by recent theories for superconductors with short electronic mean-free-paths.