946 resultados para MQL with water


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Middle Eocene to Late Oligocene sediments from near the crest (Site 689B, water depth 2080 m) and flank (water depth 2914 m) of the Maud Rise (62°S) have been investigated by coarse fraction analysis and have revealed the following: (1) The middle Eocene (50-40 Ma) was a period of pure carbonate sedimentation, with good preservation of carbonate microfossils. No opal > 40 µm is present. (2) In the late Eocene (40-36.5 Ma) opal fossils (mainly radiolaria, and some diatoms > 40 µm) appeared for the first time. Three maxima in opal sedimentation (Eocene/Oligocene boundary, middle early Oligocene and early/late Oligocene boundary) are separated by increases in carbonate sedimentation. The dissolution of carbonate fossils is strong in the opal-rich layers. Opal sedimentation is attributed to cooling and probably more vigorous atmospheric circulation and increased upwelling. (3) Carbonate dissolution increased with water depth in the Oligocene, whereas in the middle Eocene excellent carbonate preservation in the deeper Site 690B and stronger dissolution in the shallower Site 689B is attributed to different bottom-water characteristics. The middle Eocene bottom water probably was formed by strong evaporation at low latitudes, whereas by the earliest Oligocene formation of Antarctic Bottom Water (AABW) had set in. (4) Current influence, not on top but on the flank of the Maud Rise, could be recorded by means of larger grain sizes of benthonic and planktonic microfossils. (5) Ice-rafted debris was not found. Quartz and other minerals are very rare and not larger than 125 µm and may have been supplied by ice as well as by wind or by deep currents. Mica contents were up to 10 times higher in the middle Eocene on the flank compared to on the crest of the Maud Rise, indicating deep current supply.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A total of 1547 thermal conductivity values were determined by both the NP (needle probe method) and the QTM (quick thermal conductivity meter) on 1319 samples recovered during DSDP Leg 60. The NP method is primarily for the measurement of soft sedimentary samples, and the result is free from the effect of porewater evaporation. Measurement by the QTM method is faster and is applicable to all types of samples-namely, sediments (soft, semilithified, and lithified) and basement rocks. Data from the deep holes at Sites 453, 458, and 459 show that the thermal conductivity increases with depth, the rate of increase ranging from (0.18 mcal/cm s °C)/100 m at Site 459 to (0.72 mcal/cm s °C)/100 m at Site 456. A positive correlation between the sedimentary accumulation rate and the rate of thermal conductivity increase with depth indicates that both compaction and lithification are important factors. Drilled pillow basalts show nearly uniform thermal conductivity. At She 454 the thermal conductivity of one basaltic flow unit was higher near the center of the unit and lower toward the margin, reflecting variable vesicularity. Hydrothermally altered basalts at Site 456 showed higher thermal conductivity than fresh basalt because secondary calcite, quartz, and pyrite are generally more thermally conductive than fresh basalt. The average thermal conductivity in the top 50 meters of sediments correlates inversely with water depth because of dissolution of calcite, a mineral with high thermal conductivity, from the sediments as the water depth exceeds the lysocline and the carbonate compensation depth. Differences between the Mariana Trench data and the Mariana Basin and Trough data may reflect different abundances of terrigenous material in the sediment. There are remarkable correlations between thermal conductivity and other physical properties. The relationship between thermal conductivity and compressional wave velocity can be used to infer the ocean crustal thermal conductivity from the seismic velocity structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Los objetivos de este trabajo fueron comparar la eficiencia de diferentes solventes en la extracción de compuestos fenólicos a partir de las semillas de vid; evaluar la actividad antioxidante a través del poder reductor de los extractos obtenidos y analizar el proceso de extracción a diferentes temperaturas, utilizando el solvente más eficiente. Se emplearon semillas de vid cv. Cabernet Sauvignon provenientes de vinificaciones. Los solventes ensayados y las temperaturas de tratamiento fueron los siguientes: agua destilada a 90°C, alcohol metílico al 70% a 30°C, acetona al 75% a 30°C y alcohol etílico al 20% a 30°C. La concentración de los compuestos fenólicos fue determinada por el método de Folin-Ciocalteu. La actividad antioxidante se determinó midiendo el poder reductor, por el método de Oyaizu. El agua a 90°C fue el solvente más eficiente para la extracción de compuestos fenólicos de las semillas de la vid (12,587 mg/g de materia seca). La acetona 75% a 30°C extrajo 7,268 mg de compuestos fenólicos / g de materia seca, el metanol al 70% a 30°C extrajo 0,963 mg de compuestos fenólicos / g de materia seca y el etanol al 20% a 30°C extrajo 0,799 mg de compuestos fenólicos / g de materia seca. Se estudió el proceso de extracción empleando agua a 60 y a 90°C. El agua a 90°C extrajo aproximadamente cinco veces más polifenoles que el agua a 60°C, después de cinco horas de tratamiento.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gymnocalycium schickendantzii (F.A.C. Weber) Britton & Rose (Cactaceae) es una especie endémica de Argentina. En la provincia de Mendoza las poblaciones de este cactus todavía no están siendo afectadas por las urbanizaciones y cultivos que ponen en peligro su supervivencia. Conocer aspectos sobre su germinación podría ayudar a explicar el porqué de la presencia de esta especie en su hábitat natural. El objetivo del presente trabajo fue determinar en un ensayo de germinación de G. schickendantzii el efecto de tratamientos de temperaturas de 20 y 30°C durante 25 días en laboratorio usando 3 concentraciones de calcio (1, 10 y 20 meq/l Ca), y agua como testigo con y sin escarificación, y bajo condiciones de luz blanca. Se observó que a 30°C los porcentajes de germinación, con o sin escarificación, fueron significativamente mayores que a 20°C. El efecto de la escarificación sólo ayudó a incrementar los valores de germinación cuando fueron tratadas a 20°C. Las concentraciones de calcio tienen un débil efecto en la germinación de las semillas en las mismas condiciones. El tiempo de inicio de germinación (IG) y para obtener el 50% de ella (T50) fueron mayores a 30°C tanto en las semillas escarificadas como sin escarificar.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Deep sea drilling on four seamounts in the Emperor Seamount chain revealed that Paleogene shallow-water carbonate sediments of the "bryozoan-algal" facies crown the basalt edifices. According to the biofacies model of Schlanger and Konishi (1966, 1975), this bryozoan- algal assemblage suggests that the seamounts formed in cooler, more northerly waters than those presently occupied by the island of Hawaii; i.e., the paleolatitudes of formation were greater than 20 °N. Moving southward toward the youngest member of the seamount chain, a facies gradient indicative of warmer waters was observed. This gradient is interpreted as a reflection of a northward shift in isotherms during the time span in which the seamounts were progressively formed (Savin et al., 1975). On all seamounts, sedimentation at the drilling sites occurred in a high-energy environment with water depths of approximately 20 meters. Early-stage carbonate diagenesis began in the phreatic zone in the presence of meteoric water, but proceeded after subsidence of the seamounts into intermediate sea waters, where the bulk, stable isotopic composition was determined. The subsidence into intermediate waters was rapid, and permitted establishment of an isotopic equilibrium which, like the facies gradient, reflects the northward shift in isotherms during the Paleogene. Calcite and zeolite cements comprise the later-stage diagenesis, and originated from solutions arising from the hydrolysis of the underlying basalt. In conclusion, the results of this study of the shallow-water carbonate sediments are not inconsistent with a paleolatitude of formation for Suiko Seamount (Site 433) of 26.9 ±3.5 °N, as determined by paleomagnetic measurements (Kono, 1980).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

En Argentina se están desarrollando genotipos de garbanzo (Cicer arietinum L.) para adecuarlos a las distintas zonas de producción. Estos presentan diferentes fenotipos lo que podría afectar las preferencias de oviposición de los insectos herbívoros de hábito minador. Los objetivos de este trabajo fueron: 1) determinar si las hembras del género Liriomyza spp. muestran preferencia por algún genotipo de garbanzo, y 2) evaluar el efecto del extracto de Melia azedarach sobre las líneas de garbanzo que resultaran susceptibles. Se sembraron dos líneas selectas y dos cultivares de C. arietinum que presentan hojas unifoliadas enteras o compuestas, en el Campo Experimental de la Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, en bloques al azar con tres repeticiones. Para analizar la preferencia, mediante censos semanales se evaluó la presencia de las larvas de las moscas en el período julio-septiembre. Los dípteros eligieron de manera significativa los genotipos de hoja entera y grande. Posteriormente, las plantas con hojas minadas de las variedades preferidas fueron sometidas a tratamiento con el extracto botánico. Para ello se marcaron cinco plantas de cada bloque: a 15 se les aplicó extracto (10%) y a las otras 15 agua (control). Se observó que el número de hojas minadas, de pupas y adultos emergidos disminuyeron en los tratamientos con el extracto. Estudios complementarios serán necesarios para poder considerar este compuesto natural en un plan de manejo del herbívoro.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Present-day low-latitude eastern and western Atlantic basins are geochemically distinct below the sill depth of the Mid-Atlantic Ridge. While Antarctic Bottom Water (AABW) circulates freely in the western Atlantic, flow into the eastern Atlantic is restricted below 4 km which results in filling the abyssal depths of this basin with water of geochemical similarity to nutrient depleted North Atlantic Deep Water. Using carbon isotopes and Cd/Ca ratios in benthic foraminifera we reconstruct the geochemistry of these basins during the last glacial maximum. Results indicate that deep eastern and western Atlantic basins became geochemically identical during the last glacial. This was achieved by shoaling of the upper surface of AABW above the sill depth of the Mid-Atlantic Ridge, which allowed bottom waters in both basins to be filled with the same water mass. Although AABW became the dominant water mass in the deep eastern Atlantic basin during the glacial, Holocene-glacial delta13C-PO4 shifts in this basin are in Redfield proportions, unlike the disproportionate Holocene-glacial delta13C-PO4 shifts observed in the Southern Ocean. By examining the composition of deep and intermediate waters throughout the Atlantic, we show that this effect was induced by a change in gradient of the delta13C-PO4 deepwater mixing line during glacial times. Evidence from high-latitude planktonic data suggests that the change in gradient of the deepwater mixing line was brought about through a significant reduction in the thermodynamic effect on Southern Ocean surface waters. By using coupled delta13C-PO4 data to constrain the composition of end member water masses in the glacial Atlantic, we conclude that deep waters in the low-latitude glacial Atlantic were composed of a mixture of northern and southern source waters in a ratio of 1:3.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The relationship between planktonic and benthic foraminiferal stable-isotope values and oceanographic conditions and factors controlling isotopic variations are discussed on the basis of oxygen and carbon isotopic analyses of 192 modern surface and Last Glacial Maximum (LGM) samples from the South China Sea (SCS). The harmonic variation of benthic delta18O in surface sediments with water depth and temperature implies that the temperature is the main factor influencing benthic delta18O variations. Planktonic delta18O fluctuates with sea surface temperature (SST) and salinity (SSS). The N-S temperature gradient results in planktonic delta18O decreasing from the northeast to the south. Cool, saline waters driven by the winter monsoon are interpreted to have been responsible for the high delta18O values in the northeast SCS. The East Asian monsoons not only bring nutrients into the South China Sea and maintain high nutrient concentration levels at the southwestern and northeastern ends, which cause depleted delta13C both in planktonic (surface) and benthic (bottom) samples but also reduce planktonic/benthic delta18O differences. The distribution of delta18O and delta13C in the surface and LGM samples are strikingly similar, indicating that the impact of SST and SSS has been maintained, and nutrient inputs, mainly from the northeastern and southwestern ends, have been controlled by monsoons since the LGM. Comparisons of the modern and LGM delta18O indicate a difference of about 3.6 °C in bottom-water temperature and a large surface-to-bottom temperature gradient during the LGM as compared to today.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the Persian Gulf and the Gulf of Oman marl forms the primary sediment cover, particularly on the Iranian side. A detailed quantitative description of the sediment components > 63 µ has been attempted in order to establish the regional distribution of the most important constituents as well as the criteria governing marl sedimentation in general. During the course of the analysis, the sand fraction from about 160 bottom-surface samples was split into 5 phi° fractions and 500 to 800 grains were counted in each individual fraction. The grains were cataloged in up to 40 grain type catagories. The gravel fraction was counted separately and the values calculated as weight percent. Basic for understanding the mode of formation of the marl sediment is the "rule" of independent availability of component groups. It states that the sedimentation of different component groups takes place independently, and that variation in the quantity of one component is independent of the presence or absence of other components. This means, for example, that different grain size spectrums are not necessarily developed through transport sorting. In the Persian Gulf they are more likely the result of differences in the amount of clay-rich fine sediment brought in to the restricted mouth areas of the Iranian rivers. These local increases in clayey sediment dilute the autochthonous, for the most part carbonate, coarse fraction. This also explains the frequent facies changes from carbonate to clayey marl. The main constituent groups of the coarse fraction are faecal pellets and lumps, the non carbonate mineral components, the Pleistocene relict sediment, the benthonic biogene components and the plankton. Faecal pellets and lumps are formed through grain size transformation of fine sediment. Higher percentages of these components can be correlated to large amounts of fine sediment and organic C. No discernable change takes place in carbonate minerals as a result of digestion and faecal pellet formation. The non-carbonate sand components originate from several unrelated sources and can be distinguished by their different grain size spectrum; as well as by other characteristics. The Iranian rivers supply the greatest amounts (well sorted fine sand). Their quantitative variations can be used to trace fine sediment transport directions. Similar mineral maxima in the sediment of the Gulf of Oman mark the path of the Persian Gulf outflow water. Far out from the coast, the basin bottoms in places contain abundant relict minerals (poorly sorted medium sand) and localized areas of reworked salt dome material (medium sand to gravel). Wind transport produces only a minimal "background value" of mineral components (very fine sand). Biogenic and non-biogenic relict sediments can be placed in separate component groups with the help of several petrographic criteria. Part of the relict sediment (well sorted fine sand) is allochthonous and was derived from the terrigenous sediment of river mouths. The main part (coarse, poorly sorted sediment), however, was derived from the late Pleistocene and forms a quasi-autochthonous cover over wide areas which receive little recent sedimentation. Bioturbation results in a mixing of the relict sediment with the overlying younger sediment. Resulting vertical sediment displacement of more than 2.5 m has been observed. This vertical mixing of relict sediment is also partially responsible for the present day grain size anomalies (coarse sediment in deep water) found in the Persian Gulf. The mainly aragonitic components forming the relict sediment show a finely subdivided facies pattern reflecting the paleogeography of carbonate tidal flats dating from the post Pleistocene transgression. Standstill periods are reflected at 110 -125m (shelf break), 64-61 m and 53-41 m (e.g. coare grained quartz and oolite concentrations), and at 25-30m. Comparing these depths to similar occurrences on other shelf regions (e. g. Timor Sea) leads to the conclusion that at this time minimal tectonic activity was taking place in the Persian Gulf. The Pleistocene climate, as evidenced by the absence of Iranian river sediment, was probably drier than the present day Persian Gulf climate. Foremost among the benthonic biogene components are the foraminifera and mollusks. When a ratio is set up between the two, it can be seen that each group is very sensitive to bottom type, i.e., the production of benthonic mollusca increases when a stable (hard) bottom is present whereas the foraminifera favour a soft bottom. In this way, regardless of the grain size, areas with high and low rates of recent sedimentation can be sharply defined. The almost complete absence of mollusks in water deeper than 200 to 300 m gives a rough sedimentologic water depth indicator. The sum of the benthonic foraminifera and mollusca was used as a relative constant reference value for the investigation of many other sediment components. The ratio between arenaceous foraminifera and those with carbonate shells shows a direct relationship to the amount of coarse grained material in the sediment as the frequence of arenaceous foraminifera depends heavily on the availability of sand grains. The nearness of "open" coasts (Iranian river mouths) is directly reflected in the high percentage of plant remains, and indirectly by the increased numbers of ostracods and vertebrates. Plant fragments do not reach their ultimate point of deposition in a free swimming state, but are transported along with the remainder of the terrigenous fine sediment. The echinoderms (mainly echinoids in the West Basin and ophiuroids in the Central Basin) attain their maximum development at the greatest depth reached by the action of the largest waves. This depth varies, depending on the exposure of the slope to the waves, between 12 to 14 and 30 to 35 m. Corals and bryozoans have proved to be good indicators of stable unchanging bottom conditions. Although bryozoans and alcyonarian spiculae are independent of water depth, scleractinians thrive only above 25 to 30 m. The beginning of recent reef growth (restricted by low winter temperatures) was seen only in one single area - on a shoal under 16 m of water. The coarse plankton fraction was studied primarily through the use of a plankton-benthos ratio. The increase in planktonic foraminifera with increasing water depth is here heavily masked by the "Adjacent sea effect" of the Persian Gulf: for the most part the foraminifera have drifted in from the Gulf of Oman. In contrast, the planktonic mollusks are able to colonize the entire Persian Gulf water body. Their amount in the plankton-benthos ratio always increases with water depth and thereby gives a reliable picture of local water depth variations. This holds true to a depth of around 400 m (corresponding to 80-90 % plankton). This water depth effect can be removed by graphical analysis, allowing the percentage of planktonic mollusks per total sample to be used as a reference base for relative sedimentation rate (sedimentation index). These values vary between 1 and > 1000 and thereby agree well with all the other lines of evidence. The "pteropod ooze" facies is then markedly dependent on the sedimentation rate and can theoretically develop at any depth greater than 65 m (proven at 80 m). It should certainly no longer be thought of as "deep sea" sediment. Based on the component distribution diagrams, grain size and carbonate content, the sediments of the Persian Gulf and the Gulf of Oman can be grouped into 5 provisional facies divisions (Chapt.19). Particularly noteworthy among these are first, the fine grained clayey marl facies occupying the 9 narrow outflow areas of rivers, and second, the coarse grained, high-carbonate marl facies rich in relict sediment which covers wide sediment-poor areas of the basin bottoms. Sediment transport is for the most part restricted to grain sizes < 150 µ and in shallow water is largely coast-parallel due to wave action at times supplemented by tidal currents. Below the wave base gravity transport prevails. The only current capable of moving sediment is the Persian Gulf outflow water in the Gulf of Oman.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Early Oligocene siliceous microfossils were recovered in the upper c. 193 m of the CRP-3 drillcore. Although abundance and preservation are highly variable through this section, approximately 130 siliceous microfossil taxa were identified, including diatoms, silicoflagellates, ebridians, chrysophycean cysts, and endoskeletal dinoflagellates. Well-preserved and abundant assemblages characterize samples in the upper c. 70 m and indicate deposition in a coastal setting with water depths between 50 and 200 m. Abundance fluctuations over narrow intervals in the upper c. 70 mbsf are interpreted to reflect environmental changes that were either conducive or deleterious to growth and preservation of siliceous microfossils. Only poorly-preserved (dissolved, replaced, and/or fragmented) siliceous microfossils are present from c. 70 to 193 mbsf. Diatom biostratigraphy indicates that the CRP-3 section down to c. 193 mbsf is early Oligocene in age. The lack of significant changes in composition of the siliceous microfossil assemblage suggests that no major hiatuses are present in this interval. The first occurrence (FO) of Cavitatus jouseanus at 48.44 mbsf marks the base of the Cavitatus jouseanus Zone. This datum is inferred to be near the base of Subchron C12n at c. 30.9 Ma. The FO of Rhizosolenia antarctica at 68.60 mbsf marks the base of the Rhizosolenia antarctica Zone. The FO of this taxon is correlated in deep-sea sections to Chron C13 (33.1 to 33.6 Ma). However, the lower range of R. antarctica is interpreted as incomplete in the CRP-3 drillcore, as it is truncated at an underlying interval of poor preservation: therefore, an age of c. 33.1 to 30.9 Ma is inferred for interval between c. 70 and 50 mbsf. The absence of Hemiaulus caracteristicus from diatom-bearing interval of CRP-3 further indicates an age younger than c. 33 Ma (Subchron C13n) for strata above c. 193 mbsf. Siliceous microfossil assemblages in CRP-3 are significantly different from the late Eocene assemblages reported CIROS-1 drillcore. The absence of H. caracteristicus, Stephanopyxis splendidus, and Pterotheca danica, and the ebridians Ebriopsis crenulata, Parebriopsis fallax, and Pseudoammodochium dictyoides in CRP-3 indicates that the upper 200 m of the CRP-3 drillcore is equivalent to part of the stratigraphic interval missing within the unconformity at c. 366 mbsf in CIROS-1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A pronounced deficit of nitrogen (N) in the oxygen minimum zone (OMZ) of the Arabian Sea suggests the occurrence of heavy N-loss that is commonly attributed to pelagic processes. However, the OMZ water is in direct contact with sediments on three sides of the basin. Contribution from benthic N-loss to the total N-loss in the Arabian Sea remains largely unassessed. In October 2007, we sampled the water column and surface sediments along a transect cross-cutting the Arabian Sea OMZ at the Pakistan continental margin, covering a range of station depths from 360 to 1430 m. Benthic denitrification and anammox rates were determined by using 15N-stable isotope pairing experiments. Intact core incubations showed declining rates of total benthic N-loss with water depth from 0.55 to 0.18 mmol N m**-2 day**-1. While denitrification rates measured in slurry incubations decreased from 2.73 to 1.46 mmol N m**-2 day**-1 with water depth, anammox rates increased from 0.21 to 0.89 mmol N m**-2 day**-1. Hence, the contribution from anammox to total benthic N-loss increased from 7% at 360 m to 40% at 1430 m. This trend is further supported by the quantification of cd1-containing nitrite reductase (nirS), the biomarker functional gene encoding for cytochrome cd1-Nir of microorganisms involved in both N-loss processes. Anammox-like nirS genes within the sediments increased in proportion to total nirS gene copies with water depth. Moreover, phylogenetic analyses of NirS revealed different communities of both denitrifying and anammox bacteria between shallow and deep stations. Together, rate measurement and nirS analyses showed that anammox, determined for the first time in the Arabian Sea sediments, is an important benthic N-loss process at the continental margin off Pakistan, especially in the sediments at deeper water depths. Extrapolation from the measured benthic N-loss to all shelf sediments within the basin suggests that benthic N-loss may be responsible for about half of the overall N-loss in the Arabian Sea.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fission product (90Sr-90Y, 137Cs, total beta) and 21OPb-210Po activities were measured in core samples from the temperate vernagtferner (3150 m altitude, Oetztal Alps, Austria). The results show that the investigated fission products are transported with water resulting from melting processes, and are sorbed on dust or dirt horizons. These products are, therefore, not suited for dating temperate glaciers. 210Pb is also transported with water and displaced from its original deposition. However, despite large fluctuations, the specific activity of 210Pb decreases with depth, and can be used to estimate accumulation rates and the age of the ice. The average annual accumulation rate amounts to about 80 cm water equivalent, and the deepest sample (81 m i.e. ab. 65 m w. e.) was deposited in the beginning of this century. These results agree with data obtained from other observations on this glacier and show that the 210Pb_method is suitable to date temperate glaciers, if the ice cores cover a time interval of about 100 years (i.e. ab. 4 half-lives of 210Pb). The surface activity of 210Pb was found to be 5 ± 1 dpm per kg of ice in agreement with other locations in the Alps and with measurements of fresh snow.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fucus vesiculosus L. (Phaeophyceae) is the most abundant and hence ecologically most important primary producer, carbon sink and habitat provider in the western Baltic Sea. All F. vesiculosus L. specimens were collected on 23 April 2014 from a depth of 0.2-1 m in the non-tidal Kiel Fjord, western Baltic Sea (54°27'N; 10°12'E), where this species forms dense and almost monospecific stands on stones. After sampling the algal thalli were stored in a refrigerator box with water from the sampling site, transported to Bremerhaven and stored at 10 °C for one day in filtered seawater. Experiments were conducted with vegetative apical tips (6.7±0.5 cm length), the actively growing region of F. vesiculosus, which were randomly selected and cut from 144 different individuals prior to the experiments. These tips were acclimated to laboratory conditions for three days in filtered seawater at 10 °C before the start of the experiment. Furthermore, 30 additional vegetative apices were freeze-dried to document the initial biochemical status of F. vesiculosus in its native habitat. A temperature gradient was installed in a walk-in constant cooling chamber (15 °C) in nine water baths (5, 10, 15, 20, 24, 26, 27, 28 and 29 °C ± 0.1 °C) which were tempered by thermostats (5, 10 and 15 °C: Huber Variostat CC + Pilot ONE, Peter Huber Kältemaschinen GmbH, Offenburg, Germany; 20 and 28 °C: Haake DC3, Thermo Fisher Scientific Inc., Waltham, USA; 24, 26, 27 and 29 °C: Haake DC10). Every temperature treatment consisted of four 2 L glass beakers (n = 4). In each beaker four F. vesiculosus apices were grown in 2 µm-filtered North Sea water diluted with demineralized water in a ratio of 1:1 and enriched with nutrients after Provasoli (1968; 1/10 enrichment), leading to a salinity of about 15.6 which equaled habitat conditions. The algae were exposed to an irradiance of 130 µmol photons m-2 s-1 ±10 % (Powerstar HGI-TS 150 W, OSRAM GmbH, Bad Homburg, Germany) measured at the top of the beaker under a 16:8 h L:D cycle. The media in the beakers was changed every third or fourth day and aerated with artificial air containing 380 ppm CO2 (gas mixing device; HTK Hamburg GmbH, Hamburg, Germany). Before the experiment, the algae were acclimated to the final temperatures in steps of 5 °C for 2 days each, beginning at 10 °C. After 21 days exposure time, three out of four samples per replicate were freeze-dried for further biochemical analyses, and afterwards the thermostats were turned off to reduce the temperature to 16±0.4 °C for another 10 days permitting growth under post-culture conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Radiocarbon measurements on core tops from the Ontong-Java plateau confirm a previous finding by Berger and Killingley [1982] that at any given water depth, cores taken on the equator have higher accumulation rates and younger core top ages than their off-equator counterparts. Further, these new results fortify the conclusion by Broecker et al. [1991] that the increase in core top radiocarbon age with water depth rules out homogeneous dissolution within the pore waters as the dominant mechanism. Either most of the dissolution must occur prior to burial or it must occur during the first pass through the respiration-CO2-rich upper pore waters after which the calcite grains become armored against further dissolution. A puzzling aspect of this new data set is that despite the sizable difference in accumulation rate, the extent of dissolution as measured by either the CaCO3 content or the ratio of CaCO3 in the >150-µm size fraction to that in the < 63-µm fraction is no different off than on the equator. In order to reconcile the results of this study with those obtained by Hales and Emerson [1996] using in situ electrodes, it is necessary to call upon calcite armoring.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To understand the validity of d18O proxy records as indicators of past temperature change, a series of experiments was conducted using an atmospheric general circulation model fitted with water isotope tracers (Community Atmosphere Model version 3.0, IsoCAM). A pre-industrial simulation was performed as the control experiment, as well as a simulation with all the boundary conditions set to Last Glacial Maximum (LGM) values. Results from the pre-industrial and LGM simulations were compared to experiments in which the influence of individual boundary conditions (greenhouse gases, ice sheet albedo and topography, sea surface temperature (SST), and orbital parameters) were changed each at a time to assess their individual impact. The experiments were designed in order to analyze the spatial variations of the oxygen isotopic composition of precipitation (d18Oprecip) in response to individual climate factors. The change in topography (due to the change in land ice cover) played a significant role in reducing the surface temperature and d18Oprecip over North America. Exposed shelf areas and the ice sheet albedo reduced the Northern Hemisphere surface temperature and d18Oprecip further. A global mean cooling of 4.1 °C was simulated with combined LGM boundary conditions compared to the control simulation, which was in agreement with previous experiments using the fully coupled Community Climate System Model (CCSM3). Large reductions in d18Oprecip over the LGM ice sheets were strongly linked to the temperature decrease over them. The SST and ice sheet topography changes were responsible for most of the changes in the climate and hence the d18Oprecip distribution among the simulations.