Quantitative component analysis of the coarse fraction of surface sediments from the Persian Gulf
Cobertura |
MEDIAN LATITUDE: 27.123892 * MEDIAN LONGITUDE: 53.492052 * SOUTH-BOUND LATITUDE: 24.410000 * WEST-BOUND LONGITUDE: 49.710000 * NORTH-BOUND LATITUDE: 29.505000 * EAST-BOUND LONGITUDE: 58.120000 * DATE/TIME START: 1965-01-01T00:00:00 * DATE/TIME END: 1965-04-15T00:00:00 |
---|---|
Data(s) |
14/11/1971
|
Resumo |
In the Persian Gulf and the Gulf of Oman marl forms the primary sediment cover, particularly on the Iranian side. A detailed quantitative description of the sediment components > 63 µ has been attempted in order to establish the regional distribution of the most important constituents as well as the criteria governing marl sedimentation in general. During the course of the analysis, the sand fraction from about 160 bottom-surface samples was split into 5 phi° fractions and 500 to 800 grains were counted in each individual fraction. The grains were cataloged in up to 40 grain type catagories. The gravel fraction was counted separately and the values calculated as weight percent. Basic for understanding the mode of formation of the marl sediment is the "rule" of independent availability of component groups. It states that the sedimentation of different component groups takes place independently, and that variation in the quantity of one component is independent of the presence or absence of other components. This means, for example, that different grain size spectrums are not necessarily developed through transport sorting. In the Persian Gulf they are more likely the result of differences in the amount of clay-rich fine sediment brought in to the restricted mouth areas of the Iranian rivers. These local increases in clayey sediment dilute the autochthonous, for the most part carbonate, coarse fraction. This also explains the frequent facies changes from carbonate to clayey marl. The main constituent groups of the coarse fraction are faecal pellets and lumps, the non carbonate mineral components, the Pleistocene relict sediment, the benthonic biogene components and the plankton. Faecal pellets and lumps are formed through grain size transformation of fine sediment. Higher percentages of these components can be correlated to large amounts of fine sediment and organic C. No discernable change takes place in carbonate minerals as a result of digestion and faecal pellet formation. The non-carbonate sand components originate from several unrelated sources and can be distinguished by their different grain size spectrum; as well as by other characteristics. The Iranian rivers supply the greatest amounts (well sorted fine sand). Their quantitative variations can be used to trace fine sediment transport directions. Similar mineral maxima in the sediment of the Gulf of Oman mark the path of the Persian Gulf outflow water. Far out from the coast, the basin bottoms in places contain abundant relict minerals (poorly sorted medium sand) and localized areas of reworked salt dome material (medium sand to gravel). Wind transport produces only a minimal "background value" of mineral components (very fine sand). Biogenic and non-biogenic relict sediments can be placed in separate component groups with the help of several petrographic criteria. Part of the relict sediment (well sorted fine sand) is allochthonous and was derived from the terrigenous sediment of river mouths. The main part (coarse, poorly sorted sediment), however, was derived from the late Pleistocene and forms a quasi-autochthonous cover over wide areas which receive little recent sedimentation. Bioturbation results in a mixing of the relict sediment with the overlying younger sediment. Resulting vertical sediment displacement of more than 2.5 m has been observed. This vertical mixing of relict sediment is also partially responsible for the present day grain size anomalies (coarse sediment in deep water) found in the Persian Gulf. The mainly aragonitic components forming the relict sediment show a finely subdivided facies pattern reflecting the paleogeography of carbonate tidal flats dating from the post Pleistocene transgression. Standstill periods are reflected at 110 -125m (shelf break), 64-61 m and 53-41 m (e.g. coare grained quartz and oolite concentrations), and at 25-30m. Comparing these depths to similar occurrences on other shelf regions (e. g. Timor Sea) leads to the conclusion that at this time minimal tectonic activity was taking place in the Persian Gulf. The Pleistocene climate, as evidenced by the absence of Iranian river sediment, was probably drier than the present day Persian Gulf climate. Foremost among the benthonic biogene components are the foraminifera and mollusks. When a ratio is set up between the two, it can be seen that each group is very sensitive to bottom type, i.e., the production of benthonic mollusca increases when a stable (hard) bottom is present whereas the foraminifera favour a soft bottom. In this way, regardless of the grain size, areas with high and low rates of recent sedimentation can be sharply defined. The almost complete absence of mollusks in water deeper than 200 to 300 m gives a rough sedimentologic water depth indicator. The sum of the benthonic foraminifera and mollusca was used as a relative constant reference value for the investigation of many other sediment components. The ratio between arenaceous foraminifera and those with carbonate shells shows a direct relationship to the amount of coarse grained material in the sediment as the frequence of arenaceous foraminifera depends heavily on the availability of sand grains. The nearness of "open" coasts (Iranian river mouths) is directly reflected in the high percentage of plant remains, and indirectly by the increased numbers of ostracods and vertebrates. Plant fragments do not reach their ultimate point of deposition in a free swimming state, but are transported along with the remainder of the terrigenous fine sediment. The echinoderms (mainly echinoids in the West Basin and ophiuroids in the Central Basin) attain their maximum development at the greatest depth reached by the action of the largest waves. This depth varies, depending on the exposure of the slope to the waves, between 12 to 14 and 30 to 35 m. Corals and bryozoans have proved to be good indicators of stable unchanging bottom conditions. Although bryozoans and alcyonarian spiculae are independent of water depth, scleractinians thrive only above 25 to 30 m. The beginning of recent reef growth (restricted by low winter temperatures) was seen only in one single area - on a shoal under 16 m of water. The coarse plankton fraction was studied primarily through the use of a plankton-benthos ratio. The increase in planktonic foraminifera with increasing water depth is here heavily masked by the "Adjacent sea effect" of the Persian Gulf: for the most part the foraminifera have drifted in from the Gulf of Oman. In contrast, the planktonic mollusks are able to colonize the entire Persian Gulf water body. Their amount in the plankton-benthos ratio always increases with water depth and thereby gives a reliable picture of local water depth variations. This holds true to a depth of around 400 m (corresponding to 80-90 % plankton). This water depth effect can be removed by graphical analysis, allowing the percentage of planktonic mollusks per total sample to be used as a reference base for relative sedimentation rate (sedimentation index). These values vary between 1 and > 1000 and thereby agree well with all the other lines of evidence. The "pteropod ooze" facies is then markedly dependent on the sedimentation rate and can theoretically develop at any depth greater than 65 m (proven at 80 m). It should certainly no longer be thought of as "deep sea" sediment. Based on the component distribution diagrams, grain size and carbonate content, the sediments of the Persian Gulf and the Gulf of Oman can be grouped into 5 provisional facies divisions (Chapt.19). Particularly noteworthy among these are first, the fine grained clayey marl facies occupying the 9 narrow outflow areas of rivers, and second, the coarse grained, high-carbonate marl facies rich in relict sediment which covers wide sediment-poor areas of the basin bottoms. Sediment transport is for the most part restricted to grain sizes < 150 µ and in shallow water is largely coast-parallel due to wave action at times supplemented by tidal currents. Below the wave base gravity transport prevails. The only current capable of moving sediment is the Persian Gulf outflow water in the Gulf of Oman. |
Formato |
application/zip, 4 datasets |
Identificador |
https://doi.pangaea.de/10.1594/PANGAEA.548408 doi:10.1594/PANGAEA.548408 |
Idioma(s) |
en |
Publicador |
PANGAEA |
Direitos |
CC-BY: Creative Commons Attribution 3.0 Unported Access constraints: unrestricted |
Fonte |
Supplement to: Sarnthein, Michael (1971): Oberflächensedimente im Persischen Golf und Golf von Oman. II. Quantitative Komponentenanalyse der Grobfraktion. Meteor Forschungsergebnisse, Deutsche Forschungsgemeinschaft, Reihe C Geologie und Geophysik, Gebrüder Bornträger, Berlin, Stuttgart, C5, 1-113 |
Palavras-Chave | #<63 µm; >2 mm; >63 µm; 2000-630 µm gS; Algae, calcareous; Algae calc; Balanomorpha; BC; benthic; Biogenic frac; Biogenic total, fractionated; Box corer; Bryozoa; Coral; Crustacea; Decapoda; Depth; DEPTH, sediment/rock; Dissolvable fraction; Dissolv frac; Event; Fecal pel; Fecal pellets; Foram bent agg; Foram bent calc; Foraminifera, benthic agglutinated; Foraminifera, benthic calcareous; Foraminifera, planktic; Foram plankt; Gastropoda; GIK/IfG; GIK01054; GIK01055; GIK01056; GIK01057; GIK01058; GIK01059; GIK01060; GIK01061; GIK01062; GIK01063; GIK01064; GIK01065; GIK01066; GIK01067; GIK01068; GIK01069; GIK01070; GIK01071; GIK01072; GIK01073; GIK01074; GIK01075; GIK01076; GIK01077; GIK01078; GIK01079; GIK01080; GIK01081; GIK01082; GIK01083; GIK01084; GIK01085; GIK01088; GIK01089; GIK01090; GIK01091; GIK01092; GIK01093; GIK01094; GIK01095; GIK01096; GIK01097; GIK01098; GIK01099; GIK01100; GIK01101; GIK01102; GIK01103; GIK01104; GIK01105; GIK01106; GIK01107; GIK01108; GIK01109; GIK01110; GIK01111; GIK01112; GIK01113; GIK01114; GIK01115; GIK01116; GIK01117-2; GIK01118; GIK01119; GIK01120; GIK01121; GIK01122; GIK01123; GIK01124; GIK01125; GIK01126; GIK01127; GIK01128; GIK01129; GIK01130; GIK01131; GIK01132; GIK01133; GIK01134; GIK01135; GIK01136; GIK01137; GIK01138; GIK01139; GIK01140; GIK01141; GIK01142; GIK01143; GIK01144; GIK01145; GIK01146; GIK01147; GIK01148; GIK01149; GIK01150; GIK01151; GIK01152; GIK01153; GIK01154; GIK01155; GIK01156; GIK01157; GIK01158; GIK01159; GIK01160; GIK01161; GIK01162; GIK01163; GIK01164; GIK01165; GIK01166; GIK01167; GIK01168; GIK01169; GIK01170; GIK01171; GIK01172; GIK01173; GIK01174; GIK01175; GIK01176; GIK01177; GIK01178; GIK01179; GIK01180; GIK01181; GIK01182; GIK01183; GIK01184; GIK01185; GIK01186; GIK01187; GIK01188; GIK01189; GIK01190; GIK01191; GIK01192; GIK01193-3; GIK01194; GIK01195; GIK01196; GIK01197; GIK01198; GIK01199; GIK01200; GIK01201; GIK01202; GIK01203; GIK01204; Grains; Grains, counted/analyzed; Gravel; Gravel, mass netto; Gravity corer (Kiel type); Holoth; Holothuria; IIOE - International Indian Ocean Expedition; including Echinida; including Hereopoda; including heteropoda; including Heteropoda; including wood, algae and pollen; Indet; Indeterminata; Institute for Geosciences, Christian Albrechts University, Kiel; KAL; Kasten corer; Label; Latitude; LATITUDE; Light minerals; LM; Longitude; LONGITUDE; M1; M1_249; M1_250; M1_251; M1_252 01057-C; M1_253; M1_254 01059-B; M1_255; M1_256; M1_257; M1_258; M1_259; M1_260; M1_261; M1_262; M1_263; M1_264; M1_265; M1_266; M1_267; M1_268; M1_269; M1_270; M1_271; M1_272; M1_273 01078-A; M1_274; M1_275; M1_276; M1_277; M1_278 01083-B; M1_279 01084-B; M1_280A; M1_281 01088-C; M1_282; M1_283; M1_284; M1_285; M1_286 01093-B; M1_287; M1_288; M1_289 01096-B; M1_290; M1_290B; M1_290C; M1_291; M1_292 11101-2; M1_293 11102-3; M1_294; M1_295 11104-2; M1_296 11105-3; M1_297 11106-2; M1_298; M1_299; M1_300; M1_301 11110-2; M1_302 11111-2; M1_303 11112-1; M1_304 11113-2; M1_305 11114-2; M1_306; M1_307; M1_308 11117-2; M1_309; M1_310 11119-2; M1_311 11120-2; M1_312 11121-2; M1_313 11122-2; M1_314; M1_315; M1_316; M1_317; M1_318 01127-B; M1_319 01128-B; M1_320 01129-B; M1_321 01130-B; M1_322; M1_323 11132-1; M1_324; M1_324 11134-1; M1_326 01135-B; M1_327 01136-B; M1_328A 01137-B; M1_328B 01138-B; M1_329; M1_329C 01141-B; M1_330A 01142-B; M1_330B 01143-B; M1_330C 01144-B; M1_331 01145-C; M1_332 01146-B; M1_333; M1_334 01148-B; M1_335 01149-B; M1_336 01150-B; M1_337 01151-B; M1_338 01152-B; M1_339 11053-1; M1_340 01154-B; M1_341 01155-B; M1_342; M1_342A 01156-B; M1_343; M1_344; M1_345; M1_346 01161-B; M1_347A 01162-B; M1_347B 01163-B; M1_347C; M1_348 01165-A; M1_349 01166-B; M1_350; M1_351; M1_352 01173-C; M1_353 01174-B; M1_354 01175-B; M1_355A 01176-B; M1_355B 01177-C; M1_356 01178-C; M1_357 11079-2; M1_358 01180-C; M1_359 11081-2; M1_360 01182-B; M1_361 01183-B; M1_362; M1_363 11085-2; M1_364; M1_365 01187-C; M1_366 11088-1; M1_367; M1_368 01190-C; M1_369; M1_370 11092-2; M1_371 11093-3; M1_372; M1_373; M1_374 01196-C; M1_375; M1_376 01198-B; M1_377 01199-G; M1_378 01200-B; M1_379; M1_380; M1_381; M1_382; Meteor (1964); Northern Arabian Sea; Ooids; Ophiuroidea; Ostrac; Ostracoda; Persian Gulf; Plant fragments; Plants; Porifera; Pteropoda; relict; Rew; Reworked; Sample code/label; Scaphopoda; Size fraction < 0.063 mm, mud, pelite, silt+clay; Size fraction > 0.063 mm, sand; Size fraction > 2 mm, gravel; Size fraction 2.000-0.630 mm, coarse sand; SL; Verteb; Vertebrata; Worm tubes |
Tipo |
Dataset |