989 resultados para MODULATION SPECTRUM
Resumo:
Theoretical and numerical studies are presented of the amplitude modulation of electron-acoustic waves (EAWs) propagating in space plasmas whose constituents are inertial cold electrons, Boltzmann distributed hot electrons, and stationary ions. Perturbations oblique to the carrier EAW propagation direction have been considered. The stability analysis, based on a nonlinear Schrodinger equation, reveals that the EAW may become unstable; the stability criteria depend on the angle theta between the modulation and propagation directions. Different types of localized EA excitations are shown to exist.
Resumo:
The occurrence of the modulational instability in transverse dust lattice waves propagating in a one-dimensional dusty plasma crystal is investigated. The amplitude modulation mechanism, which is related to the intrinsic nonlinearity of the sheath electric field, is shown to destabilize the carrier wave under certain conditions, possibly leading to the formation of localized envelope excitations. Explicit expressions for the instability growth rate and threshold are presented and discussed. (C) 2004 American Institute of Physics.
Resumo:
The oblique modulational instability of dust acoustic (DA) waves in an unmagnetized warm dusty plasma with nonthermal ions, taking into account dust grain charge variation (charging), is investigated. A nonlinear Schrodinger-type equation governing the slow modulation of the wave amplitude is derived. The effects of dust temperature, dust charge variation, ion deviation from Maxwellian equilibrium (nonthermality) and constituent species' concentration on the modulational instability of DA waves are examined. It is found that these parameters modify significantly the oblique modulational instability domain in the k-theta plane. Explicit expressions for the instability rate and threshold have been obtained in terms of the dispersion laws of the system. The possibility and conditions for the existence of different types of localized excitations are also discussed. The findings of this investigation may be useful in understanding the stable electrostatic wave packet acceleration mechanisms close to the Moon, and also enhances our knowledge on the occurrence of instability associated to pickup ions around unmagnetized bodies, such as comets, Mars, and Venus.
Resumo:
The nonlinear amplitude modulation of electrostatic waves propagating in a collisionless two-component plasma consisting of negative and positive species of equal mass and absolute charge is investigated. Pair-ion (e.g., fullerene) and electron-positron (e-p) plasmas (neglecting recombination) are covered by this description. Amplitude perturbation oblique to the direction of propagation of the wave has been considered. Two distinct linear electrostatic modes exist, namely an acoustic lower mode and Langmuir-type optic-type upper one. The behavior of each of these modes is examined from the modulational stability point of view. The stability criteria are investigated, depending on the electrostatic carrier wave number, the angle theta between the modulation and propagation directions, and the positron-to-electron temperature ratio sigma. The analysis shows that modulated electrostatic wavepackets associated to the lower (acoustic) mode are unstable, for small values of carrier wave number k (i.e., for large wavelength lambda) and for finite (small) values of the angle theta (yet stable for higher theta), while those related to the upper (optic-like) mode are stable for large values of the angle theta only, in the same limit, yet nearly for all values of sigma. These results are of relevance in astrophysical contexts (e.g., in pulsar environments), where e-p plasmas are encountered, or in pair fullerene-ion plasmas, in laboratory. (c) 2006 American Institute of Physics.
Resumo:
A study is presented of the nonlinear self-modulation of low-frequency electrostatic (dust acoustic) waves propagating in a dusty plasma, in the presence of a superthermal ion (and Maxwellian electron) background. A kappa-type superthermal distribution is assumed for the ion component, accounting for an arbitrary deviation from Maxwellian equilibrium, parametrized via a real parameter kappa. The ordinary Maxwellian-background case is recovered for kappa ->infinity. By employing a multiple scales technique, a nonlinear Schrodinger-type equation (NLSE) is derived for the electric potential wave amplitude. Both dispersion and nonlinearity coefficients of the NLSE are explicit functions of the carrier wavenumber and of relevant physical parameters (background species density and temperature, as well as nonthermality, via kappa). The influence of plasma background superthermality on the growth rate of the modulational instability is discussed. The superthermal feature appears to control the occurrence of modulational instability, since the instability window is strongly modified. Localized wavepackets in the form of either bright-or dark-type envelope solitons, modeling envelope pulses or electric potential holes (voids), respectively, may occur. A parametric investigation indicates that the structural characteristics of these envelope excitations (width, amplitude) are affected by superthermality, as well as by relevant plasma parameters (dust concentration, ion temperature).
Resumo:
The amplitude modulation of ion-acoustic waves IS investigated in a plasma consisting of adiabatic warm ions, and two different populations of thermal electrons at different temperatures. The fluid equations are reduced to nonlinear Schrodinger equation by employing a multi-scale perturbation technique. A linear stability analysis for the wave packet amplitude reveals that long wavelengths are always stable, while modulational instability sets in for shorter wavelengths. It is shown that increasing the value of the hot-to-cold electron temperature ratio (mu), for a given value of the hot-to-cold electron density ratio (nu): favors instability. The role of the ion temperature is also discussed. In the limiting case nu = 0 (or nu -> infinity). which correspond(s) to an ordinary (single) electron-ion plasma, the results of previous works are recovered.
Resumo:
We report a male child born with complete absence of his external ear, hemifacial microsomia of the right side, high arched palate, a down-turned upper lip and slightly upslanting palpebral fissures. The features were suggestive of facio-auriculo-vertebral spectrum. Investigations showed a tandem duplication of the short arm of one chromosome 10 with apparent breakpoints at p14 and p15. This case extends the list of chromosomal abnormalities associated with the facio-auriculo-vertebral phenotype and also adds useful clinical information to possible trisomy 10p phenotypes.
Resumo:
A bounded linear operator $T$ on a Banach space $X$ is called frequently hypercyclic if there exists $x\in X$ such that the lower density of the set $\{n\in\N:T^nx\in U\}$ is positive for any non-empty open subset $U$ of $X$. Bayart and Grivaux have raised a question whether there is a frequently hypercyclic operator on any separable infinite dimensional Banach space. We prove that the spectrum of a frequently hypercyclic operator has no isolated points. It follows that there are no frequently hypercyclic operators on all complex and on some real hereditarily indecomposable Banach spaces, which provides a negative answer to the above question.
Resumo:
A central paradox of vitamin D biology is that 1alpha,25-(OH)(2) D(3) exposure inversely relates to colorectal cancer (CRC) risk despite a capacity for activation of both pro- and anti-oncogenic mediators including osteopontin (OPN)/CD44 and E-cadherin, respectively. Most sporadic CRCs arise from adenomatous polyposis coli (APC) gene mutation but understanding of its effects on vitamin D growth control is limited. Here we investigate effects of the Apc(Min/+) genotype on 1alpha,25-(OH)(2) D(3) regulation of OPN/CD44/E-cadherin signalling and intestinal tumourigenesis, in vivo. In untreated Apc(Min/+) versus Apc(+/+) intestines, expression levels of OPN and its CD44 receptor were increased, whereas E-cadherin tumour suppressor signalling was attenuated. Treatment by 1alpha,25-(OH)(2) D(3) or rationally designed analogues (QW or BTW) enhanced OPN but inhibited expression of CD44, the OPN receptor implicated in cell growth. These treatments also enhanced E-cadherin tumour suppressor activity, characterized by inhibition of beta-catenin nuclear localization, T-cell factor 1 and c-myelocytomatosis protein expression in Apc(Min/+) intestine. All secosteroids suppressed Apc(Min/+)-driven tumourigenesis although QW and BTW had lower calcium-related toxicity. Taken together, these data indicate that the Apc(Min/+) genotype modulates vitamin D secosteroid actions to promote functional predominance of E-cadherin tumour suppressor activity within antagonistic molecular networks. APC heterozygosity may promote favourable tissue- or tumour-specific conditions for growth control by vitamin D secosteroid treatment.
Resumo:
As architects and designers we have a responsibility to provide an inclusive built environment. For the Autistic Spectrum Disorder (ASD) sufferer however, the built environment can be a frightening and confusing place, difficult to negotiate and tolerate. The challenge of integrating more fully into society is denied by an alienating built environment. This barrier can be magnified for ASD pupils in a poorly designed school, where their environment can further distance them from learning. Instead, if more at ease in their surroundings, in an ASD friendly environment, the ASD pupil stands a greater chance of doing better.
Whilst researchers have looked at the classroomenvironment, the transition of classroom to corridor andbeyond has so far been largely ignored. However, theneed for a well-considered threshold between class andcorridor needs to be considered. In this regard, threshold is much more than a doorway, but instead an event that demands a carefully considered place. The following paper firstly outlines why threshold as place andevent for the ASD pupil should be given consideration. It then goes onto highlight, through case studies in anIrish context, the opportunities for aiding the ASD pupil integrating in a mainstream school environment throughsensitive use of threshold. Finally it highlights inconclusion, some of the benefits for an enriched school environment for all pupils, if considering threshold as design generator.The objective is straightforward. By increasing awareness of the relationship between the ASD child and the built environment it will hopefully facilitate greater inclusion of the ASD pupil into mainstream education and society at large.
Resumo:
The imaging properties of a phase conjugating lens operating in the far field zone of the imaged source and augmented with scatterers positioned in the source near field region are theoretically studied in this paper. The phase conjugating lens consists of a double sided 2D assembly of straight wire elements, individually interconnected through phase conjugation operators. The scattering elements are straight wire segments which are loaded with lumped impedance loads at their centers. We analytically and numerically analyze all stages of the imaging process; i) evanescent-to-propagating spectrum conversion; ii) focusing properties of infinite or finite sized phase conjugating lens; iii) source reconstruction upon propagating-to-evanescent spectrum conversion. We show that the resolution that can be achieved depends critically on the separation distance between the imaged source and scattering arrangement, as well as on the topology of the scatterers used. Imaged focal widths of up to one-seventh wavelength are demonstrated. The results obtained indicate the possibility of such an arrangement as a potential practical means for realising using conventional materials devices for fine feature extraction by electromagnetic lensing at distances remotely located from the source objects under investigation