960 resultados para Lake hydrology
Resumo:
Seagrasses are ecosystem engineers that offer important habitat for a large number of species and provide a range of ecosystem services. Many seagrass ecosystems are dominated by a single species; with research showing that genotypic diversity at fine spatial scales plays an important role in maintaining a range of ecosystem functions. However, for most seagrass species, information on fine-scale patterns of genetic variation in natural populations is lacking. In this study we use a hierarchical sampling design to determine levels of genetic and genotypic diversity at different spatial scales (centimeters, meters, kilometers) in the Australian seagrass Zostera muelleri. Our analysis shows that at fine-spatial scales (< 1 m) levels of genotypic diversity are relatively low (R (Plots) = 0.37 ± 0.06 SE), although there is some intermingling of genotypes. At the site (10's m) and meadow location (km) scale we found higher levels of genotypic diversity (R (sites) = 0.79 ± 0.04 SE; R (Locations) = 0.78 ± 0.04 SE). We found some sharing of genotypes between sites within meadows, but no sharing of genotypes between meadow locations. We also detected a high level of genetic structuring between meadow locations (FST = 0.278). Taken together, our results indicate that both sexual and asexual reproduction are important in maintaining meadows of Z. muelleri. The dominant mechanism of asexual reproduction appears to occur via localised rhizome extension, although the sharing of a limited number of genotypes over the scale of 10's of metres could also result from the localised dispersal and recruitment of fragments. The large number of unique genotypes at the meadow scale indicates that sexual reproduction is important in maintaining these populations, while the high level of genetic structuring suggests little gene flow and connectivity between our study sites. These results imply that recovery from disturbances will occur through both sexual and asexual regeneration, but the limited connectivity at the landscape-scale implies that recovery at meadow-scale losses is likely to be limited.
Resumo:
The diatom flora of three lakes in the ice-free Amery Oasis, East Antarctica, was studied. Two of the lakes are meltwater reservoirs, Terrasovoje Lake (31 m depth) and Radok Lake (362 m depth), while Beaver Lake (>435 m depth) is an epishelf lake. The lakes can be characterized as cold, ultra-oligotrophic and alkaline, displaying moderate (Radok and Terrasovoje lakes) to high (Beaver Lake) conductivities. There was no diatom phytoplankton present in any of the three lakes. While 34 benthic diatom taxa were identified from modern and Holocene sediments of Terrasovoje and Radok lakes, a 30-cm long sediment core recovered in Beaver Lake was barren. Five species (Luticola muticopsis, Muelleria peraustralis, Pinnularia cymatopleura, Psammothidium metakryophilum, P. stauroneioides) are endemic to the Antarctic region. All identified taxa are photographically documented and brief notes on their taxonomy, biogeography and ecology are provided. The most abundant diatom taxa are Amphora veneta, Craticula cf. molesta, Diadesmis spp, M. peraustralis and Stauroneis anceps. This is the first report on the diatom flora in lakes of the Amery Oasis.
Resumo:
Saucer-shaped iron-manganese crusts occur adjacent to gravel shoal areas in Oneida lake in central New York. The crusts usually have a crude concentric banding owing to an alternation of orange, iron-rich layers and black, iron-poor layers. Materials from both types of layers are x-ray amorphous. The Oneida lake crusts, like most other freshwater manganese nodules, contain about the same Mn concentration as marine manganese nodules, but are usually higher in Fe and lower in trace metals than their marine equivalents. Although Fe and Mn may be precipitating directly from the lake water, it is more likely that the oxidate crusts are the result of precipitation of Fe and Mn when reduced sediment pore water comes in contact with well oxygenated bottom waters. Organisms, particularly bacteria, may play a role in the formation of the crusts, but to date no evidence of this has been found.
Resumo:
A 380 cm long sediment core from Lake Temje (central Yakutia, Eastern Siberia) was studied to infer Holocene palaeoenvironmental change in the extreme periglacial setting of eastern Siberia during the last 10,000 years. Data on sediment composition were used to characterize changes in the depositional environment during the ontogenetic development of the Lake Temje. The analysis of fossil chironomid remains and statistical treatment of chironomid data by the application of a newly developed regional Russian transfer functions provided inferences of mean July air temperatures (T_July) and water depths (WD). Reconstructed WDs show minor changes throughout the core and range between 80 and 120 cm. All the fluctuations in reconstructed water depth lie within the mean error of prediction of the inference model (RMSEP = 0.35) so it is not possible to draw conclusions from the reconstructions. A qualitative and quantitative reconstruction of Holocene climate in central Yakutia recognized three stages of palaeoenvironmental changes. The early Holocene between 10 and 8 ka BP was characterized by colder-than-today and moist summer conditions. Cryotextures in the lake sediments document full freezing of the lake water during the winter time. A general warming trend started around 8.0 ka BP in concert with enhanced biological productivity. Reconstructed mean T_July were equal or up to 1.5 °C higher than today between 6.0 ka and 5.0 ka BP. During the entire late Holocene after 4.8 ka BP, reconstructed mean T_July remained below modern value. Limnological conditions did not change significantly. The inference of a mid-Holocene climate optimum supports scenarios of Holocene climatic changes in the subpolar part of eastern Siberia and indicates climate teleconnections to the North Atlantic realm.
Resumo:
In anoxic environments, volatile methylated sulfides like methanethiol (MT) and dimethyl sulfide (DMS) link the pools of inorganic and organic carbon with the sulfur cycle. However, direct formation of methylated sulfides from reduction of dissolved inorganic carbon has previously not been demonstrated. When studying the effect of temperature on hydrogenotrophic microbial activity, we observed formation of DMS in anoxic sediment of Lake Plußsee at 55 °C. Subsequent experiments strongly suggested that the formation of DMS involves fixation of bicarbonate via a reductive pathway in analogy to methanogenesis and engages methylation of MT. DMS formation was enhanced by addition of bicarbonate and further increased when both bicarbonate and H2 were supplemented. Inhibition of DMS formation by 2-bromoethanesulfonate points to the involvement of methanogens. Compared to the accumulation of DMS, MT showed the opposite trend but there was no apparent 1:1 stoichiometric ratio between both compounds. Both DMS and MT had negative d13C values of -62 per mil and -55 per mil, respectively. Labeling with NaH**13CO3 showed more rapid incorporation of bicarbonate into DMS than into MT. The stable carbon isotopic evidence implies that bicarbonate was fixed via a reductive pathway of methanogenesis, and the generated methyl coenzyme M became the methyl donor for MT methylation. Neither DMS nor MT accumulation were stimulated by addition of the methyl-group donors methanol and syringic acid or by the methyl-group acceptor hydrogen sulphide. The source of MT was further investigated in a H2**35S labeling experiment, which demonstrated a microbially-mediated process of hydrogen sulfide methylation to MT that accounted for only <10% of the accumulation rates of DMS. Therefore, the major source of the 13C-depleted MT was neither bicarbonate nor methoxylated aromatic compounds. Other possibilities for isotopically depleted MT, such as other organic precursors like methionine, are discussed. This DMS-forming pathway may be relevant for anoxic environments such as hydrothermally influenced sediments and fluids and sulfate-methane transition zones in marine sediments.
Resumo:
Two modal size groups of sexually mature Arctic charr (Salvelinus alpinus) differing in shape and found at different depths in Lake Aigneau in the Canadian sub-Arctic are described and tested for genetic and ecological differentiation. Forms consisted of a small littoral resident, mean size 21.7 cm, and a large profundal resident, mean size 53.9 cm. Mitochondrial DNA analysis indicated that seven of eight haplotypes were diagnostic for either the littoral or profundal fish, with 66.6% of the variation being found within form groupings. Pairwise tests of microsatellite data indicated significant differences in nine of 12 loci and a significant difference between the forms across all tested loci. Molecular variation was partitioned to 84.1% within and 15.9% between forms and suggestive of either restricted interbreeding over time or different allopatric origins. Stable isotope signatures were also significantly different, with the profundal fish having higher d13C and d15N values than the littoral fish. Overlap and separation, respectively, in the range of form d13C and d15N signatures indicated that carbon was obtained from similar sources, but that forms fed at different trophic levels. Littoral fish relied on aquatic insects, predominantly chironomids. Profundal fish were largely piscivorous, including cannibalism. Predominantly empty stomachs and low per cent nitrogen muscle-tissue composition among profundal fish further indicated that the feeding activity was limited to the winter when ice-cover increases the density of available prey at depth. Results provide evidence of significant differences between the modal groups, with origins in both genetics and ecology.