Genotypic data for nine microsatellite loci for the seagrass Zostera muelleri collections from Lake Macquarie, NSW, Australia


Autoria(s): Sherman, Craig D H; York, Paul H; Smith, Timothy M; Macreadie, Peter I
Cobertura

MEDIAN LATITUDE: -33.071875 * MEDIAN LONGITUDE: 151.592293 * SOUTH-BOUND LATITUDE: -33.118780 * WEST-BOUND LONGITUDE: 151.564530 * NORTH-BOUND LATITUDE: -32.996120 * EAST-BOUND LONGITUDE: 151.632240

Data(s)

03/03/2016

Resumo

Seagrasses are ecosystem engineers that offer important habitat for a large number of species and provide a range of ecosystem services. Many seagrass ecosystems are dominated by a single species; with research showing that genotypic diversity at fine spatial scales plays an important role in maintaining a range of ecosystem functions. However, for most seagrass species, information on fine-scale patterns of genetic variation in natural populations is lacking. In this study we use a hierarchical sampling design to determine levels of genetic and genotypic diversity at different spatial scales (centimeters, meters, kilometers) in the Australian seagrass Zostera muelleri. Our analysis shows that at fine-spatial scales (< 1 m) levels of genotypic diversity are relatively low (R (Plots) = 0.37 ± 0.06 SE), although there is some intermingling of genotypes. At the site (10's m) and meadow location (km) scale we found higher levels of genotypic diversity (R (sites) = 0.79 ± 0.04 SE; R (Locations) = 0.78 ± 0.04 SE). We found some sharing of genotypes between sites within meadows, but no sharing of genotypes between meadow locations. We also detected a high level of genetic structuring between meadow locations (FST = 0.278). Taken together, our results indicate that both sexual and asexual reproduction are important in maintaining meadows of Z. muelleri. The dominant mechanism of asexual reproduction appears to occur via localised rhizome extension, although the sharing of a limited number of genotypes over the scale of 10's of metres could also result from the localised dispersal and recruitment of fragments. The large number of unique genotypes at the meadow scale indicates that sexual reproduction is important in maintaining these populations, while the high level of genetic structuring suggests little gene flow and connectivity between our study sites. These results imply that recovery from disturbances will occur through both sexual and asexual regeneration, but the limited connectivity at the landscape-scale implies that recovery at meadow-scale losses is likely to be limited.

Formato

text/tab-separated-values, 10482 data points

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.858533

doi:10.1594/PANGAEA.858533

Idioma(s)

en

Publicador

PANGAEA

Relação

Sherman, Craig D H; Stanley, Annalise M; Keough, Michael J; Gardner, Michael G; Macreadie, Peter I (2012): Development of twenty-three novel microsatellite markers for the seagrass, Zostera muelleri from Australia. Conservation Genetics Resources, 4(3), 689-693, doi:10.1007/s12686-012-9623-8

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Sherman, Craig D H; York, Paul H; Smith, Timothy M; Macreadie, Peter I (2016): Fine-scale patterns of genetic variation in a widespread clonal seagrass species. Marine Biology, in press

Palavras-Chave #Event label; Lake Macquarie, New South Walters, Australia; Latitude of event; Longitude of event; Plot; Polymorphic microsatellite loci; Pt_Wolstoncroft; Sample code/label; Sample position; Site; Sunshine; Valentine; Wangi
Tipo

Dataset