959 resultados para Lagrange-Dirichlet theorem
Resumo:
Abstract: Root and root finding are concepts familiar to most branches of mathematics. In graph theory, H is a square root of G and G is the square of H if two vertices x,y have an edge in G if and only if x,y are of distance at most two in H. Graph square is a basic operation with a number of results about its properties in the literature. We study the characterization and recognition problems of graph powers. There are algorithmic and computational approaches to answer the decision problem of whether a given graph is a certain power of any graph. There are polynomial time algorithms to solve this problem for square of graphs with girth at least six while the NP-completeness is proven for square of graphs with girth at most four. The girth-parameterized problem of root fining has been open in the case of square of graphs with girth five. We settle the conjecture that recognition of square of graphs with girth 5 is NP-complete. This result is providing the complete dichotomy theorem for square root finding problem.
Resumo:
According to the List Colouring Conjecture, if G is a multigraph then χ' (G)=χl' (G) . In this thesis, we discuss a relaxed version of this conjecture that every simple graph G is edge-(∆ + 1)-choosable as by Vizing’s Theorem ∆(G) ≤χ' (G)≤∆(G) + 1. We prove that if G is a planar graph without 7-cycles with ∆(G)≠5,6 , or without adjacent 4-cycles with ∆(G)≠5, or with no 3-cycles adjacent to 5-cycles, then G is edge-(∆ + 1)-choosable.
Resumo:
Heyting categories, a variant of Dedekind categories, and Arrow categories provide a convenient framework for expressing and reasoning about fuzzy relations and programs based on those methods. In this thesis we present an implementation of Heyting and arrow categories suitable for reasoning and program execution using Coq, an interactive theorem prover based on Higher-Order Logic (HOL) with dependent types. This implementation can be used to specify and develop correct software based on L-fuzzy relations such as fuzzy controllers. We give an overview of lattices, L-fuzzy relations, category theory and dependent type theory before describing our implementation. In addition, we provide examples of program executions based on our framework.
Resumo:
Let f(x) be a complex rational function. In this work, we study conditions under which f(x) cannot be written as the composition of two rational functions which are not units under the operation of function composition. In this case, we say that f(x) is prime. We give sufficient conditions for complex rational functions to be prime in terms of their degrees and their critical values, and we derive some conditions for the case of complex polynomials. We consider also the divisibility of integral polynomials, and we present a generalization of a theorem of Nieto. We show that if f(x) and g(x) are integral polynomials such that the content of g divides the content of f and g(n) divides f(n) for an integer n whose absolute value is larger than a certain bound, then g(x) divides f(x) in Z[x]. In addition, given an integral polynomial f(x), we provide a method to determine if f is irreducible over Z, and if not, find one of its divisors in Z[x].
Resumo:
Symmetry group methods are applied to obtain all explicit group-invariant radial solutions to a class of semilinear Schr¨odinger equations in dimensions n = 1. Both focusing and defocusing cases of a power nonlinearity are considered, including the special case of the pseudo-conformal power p = 4/n relevant for critical dynamics. The methods involve, first, reduction of the Schr¨odinger equations to group-invariant semilinear complex 2nd order ordinary differential equations (ODEs) with respect to an optimal set of one-dimensional point symmetry groups, and second, use of inherited symmetries, hidden symmetries, and conditional symmetries to solve each ODE by quadratures. Through Noether’s theorem, all conservation laws arising from these point symmetry groups are listed. Some group-invariant solutions are found to exist for values of n other than just positive integers, and in such cases an alternative two-dimensional form of the Schr¨odinger equations involving an extra modulation term with a parameter m = 2−n = 0 is discussed.
Resumo:
For inviscid fluid flow in any n-dimensional Riemannian manifold, new conserved vorticity integrals generalizing helicity, enstrophy, and entropy circulation are derived for lower-dimensional surfaces that move along fluid streamlines. Conditions are determined for which the integrals yield constants of motion for the fluid. In the case when an inviscid fluid is isentropic, these new constants of motion generalize Kelvin’s circulation theorem from closed loops to closed surfaces of any dimension.
Resumo:
Consider an undirected graph G and a subgraph of G, H. A q-backbone k-colouring of (G,H) is a mapping f: V(G) {1, 2, ..., k} such that G is properly coloured and for each edge of H, the colours of its endpoints differ by at least q. The minimum number k for which there is a backbone k-colouring of (G,H) is the backbone chromatic number, BBCq(G,H). It has been proved that backbone k-colouring of (G,T) is at most 4 if G is a connected C4-free planar graph or non-bipartite C5-free planar graph or Cj-free, j∈{6,7,8} planar graph without adjacent triangles. In this thesis we improve the results mentioned above and prove that 2-backbone k-colouring of any connected planar graphs without adjacent triangles is at most 4 by using a discharging method. In the second part of this thesis we further improve these results by proving that for any graph G with χ(G) ≥ 4, BBC(G,T) = χ(G). In fact, we prove the stronger result that a backbone tree T in G exists, such that ∀ uv ∈ T, |f(u)-f(v)|=2 or |f(u)-f(v)| ≥ k-2, k = χ(G). For the case that G is a planar graph, according to Four Colour Theorem, χ(G) = 4; so, BBC(G,T) = 4.
Resumo:
UANL
Resumo:
UANL
Resumo:
This paper proposes finite-sample procedures for testing the SURE specification in multi-equation regression models, i.e. whether the disturbances in different equations are contemporaneously uncorrelated or not. We apply the technique of Monte Carlo (MC) tests [Dwass (1957), Barnard (1963)] to obtain exact tests based on standard LR and LM zero correlation tests. We also suggest a MC quasi-LR (QLR) test based on feasible generalized least squares (FGLS). We show that the latter statistics are pivotal under the null, which provides the justification for applying MC tests. Furthermore, we extend the exact independence test proposed by Harvey and Phillips (1982) to the multi-equation framework. Specifically, we introduce several induced tests based on a set of simultaneous Harvey/Phillips-type tests and suggest a simulation-based solution to the associated combination problem. The properties of the proposed tests are studied in a Monte Carlo experiment which shows that standard asymptotic tests exhibit important size distortions, while MC tests achieve complete size control and display good power. Moreover, MC-QLR tests performed best in terms of power, a result of interest from the point of view of simulation-based tests. The power of the MC induced tests improves appreciably in comparison to standard Bonferroni tests and, in certain cases, outperforms the likelihood-based MC tests. The tests are applied to data used by Fischer (1993) to analyze the macroeconomic determinants of growth.
Resumo:
Suzumura shows that a binary relation has a weak order extension if and only if it is consistent. However, consistency is demonstrably not sufficient to extend an upper semi-continuous binary relation to an upper semicontinuous weak order. Jaffray proves that any asymmetric (or reflexive), transitive and upper semicontinuous binary relation has an upper semicontinuous strict (or weak) order extension. We provide sufficient conditions for existence of upper semicontinuous extensions of consistence rather than transitive relations. For asymmetric relations, consistency and upper semicontinuity suffice. For more general relations, we prove one theorem using a further consistency property and another with an additional continuity requirement.
Resumo:
A desirable property of a voting procedure is that it be immune to the strategic withdrawal of a candidate for election. Dutta, Jackson, and Le Breton (Econometrica, 2001) have established a number of theorems that demonstrate that this condition is incompatible with some other desirable properties of voting procedures. This article shows that Grether and Plott's nonbinary generalization of Arrow's Theorem can be used to provide simple proofs of two of these impossibility theorems.
Resumo:
This note investigates the adequacy of the finite-sample approximation provided by the Functional Central Limit Theorem (FCLT) when the errors are allowed to be dependent. We compare the distribution of the scaled partial sums of some data with the distribution of the Wiener process to which it converges. Our setup is purposely very simple in that it considers data generated from an ARMA(1,1) process. Yet, this is sufficient to bring out interesting conclusions about the particular elements which cause the approximations to be inadequate in even quite large sample sizes.
Resumo:
Recent work shows that a low correlation between the instruments and the included variables leads to serious inference problems. We extend the local-to-zero analysis of models with weak instruments to models with estimated instruments and regressors and with higher-order dependence between instruments and disturbances. This makes this framework applicable to linear models with expectation variables that are estimated non-parametrically. Two examples of such models are the risk-return trade-off in finance and the impact of inflation uncertainty on real economic activity. Results show that inference based on Lagrange Multiplier (LM) tests is more robust to weak instruments than Wald-based inference. Using LM confidence intervals leads us to conclude that no statistically significant risk premium is present in returns on the S&P 500 index, excess holding yields between 6-month and 3-month Treasury bills, or in yen-dollar spot returns.
Resumo:
UANL