929 resultados para Konrad, Von Hochstaden, abp. of Cologne, d. 1261.
Resumo:
Nano-patterned sapphire substrates (NPSSs) were fabricated by a chemical wet etching technology using nano-sized SiO2 as masks. The NPSS was applied to improve the performance of GaN-based light emitting diodes (LEDs). GaN-based LEDs on NPSSs were grown by metal organic chemical vapour deposition. The characteristics of LEDs grown on NPSSs and conventional planar sapphire substrates were studied. The light output powers of the LEDs fabricated on NPSSs were considerably enhanced compared with that of the conventional LEDs grown on planar sapphire substrates.
Resumo:
AlInN/GaN thin films were implanted with Mn ions and subsequently annealed isochronically at 750 and 850 degrees C. X-ray diffraction and Rutherford backscattering spectroscopy (RBS) techniques were employed to study the microstructural properties of the implanted/annealed samples. The effect of annealing on implantation-induced strain in thin films has been studied in detail. The strain was found to increase with dose until it reached a saturation value and after that it started decreasing with a further increase in the dose. RBS measurements indicated the atomic diffusion of In, Al, Ga and Mn in implanted samples. The in- and out-diffusion of atoms has been observed after annealing at 750 degrees C and 850 degrees C, respectively. Strong decomposition of the samples took place when annealed at 850 degrees C.
Resumo:
The effect of the growth temperature on the surface and interface quality for the GaN/AlN multiquantum well (MQW) layer grown by metal-organic vapour chemical deposition is investigated. The obtained GaN/AlN MQW structure is almost coherent to the underlying AlGaN layer at improved growth conditions. With a relatively low growth temperature, the GaN/AlN MQW growth rate increases, the surface roughness reduces considerably and no macro steps are observed, resulting in a better periodicity of MQW.
Resumo:
The effect of thermal annealing on the luminescence properties of neon implanted GaN thin films was studied. Low temperature photoluminescence (PL) measurements were carried out on the samples implanted with different doses ranging from 10(14) to 9 x 10(15) cm(-2) and annealed isochronally at 800 and 900 degrees C. We observed a new peak appearing at 3.44 eV in the low temperative PL spectra of all the implanted samples after annealing at 900 degrees C. This peak has not been observed in the PL spectra of implanted samples annealed at 800 degrees C except for the samples implanted with the highest dose. The intensity of the yellow luminescence (YL) band noticed in the PL spectra measured after annealing was observed to decrease with the increase in dose until it was completely suppressed at a dose of 5 x 10(15) cm(-2). The appearance of a new peak at 3.44 eV and dose dependent suppression of the YL band are attributed to the dissociation of VGaON complexes caused by high energy ion implantation.
Resumo:
A 1.55 mu m InGaAsP/InGaAsP multiple-quantum-well electro-absorption modulator (EAM) monolithically integrated with a distributed feedback laser (DFB) diode has been realized based on a novel butt-joint scheme by ultra-low metal-organic vapour phase epitaxy for the first time. The threshold current of 25 mA and an extinction ratio of more than 30 dB are obtained by using the novel structure. The beam divergence angles at the horizontal and vertical directions are as small as 19.3 degrees x 13 degrees, respectively, without a spot-size converter by undercutting the InGaAsP active region. The capacitance of the ridge waveguide device with a deep mesa buried by polyimide was reduced down to 0.30 pF.
Resumo:
The performances of In0.65Ga0.35N single-junction solar cells with different structures, including various doping densities and thicknesses of each layer, have been simulated. It is found that the optimum efficiency of a In0.65Ga0.35N solar cell is 20.284% with 5 x 10(17) cm(-3) carrier concentration of the front and basic regions, a 130 nm thick p-layer and a 270 nm thick n-layer.
Resumo:
X-ray photoelectron spectroscopy has been used to measure the valence band offset (VBO) of the ZnO/SrTiO3 heterojunction. It is found that a type-II band alignment forms at the interface. The VBO and conduction band offset (CBO) are determined to be 0.62 +/- 0.23 and 0.79 +/- 0.23 eV, respectively. The directly obtained VBO value is in good agreement with the result of theoretical calculations based on the interface-induced gap states and the chemical electronegativity theory. Furthermore, the CBO value is also consistent with the electrical transport investigations.
Resumo:
Ferromagnetic properties of Mn-implanted wurtzite AlxIn1-xN/GaN thin films grown by metal organic chemical vapor deposition (MOCVD) were observed using a quantum design superconducting quantum interference device (SQUID) magnetometer. Hysteresis behavior with a reasonably high saturation magnetic moment at room temperature for all the samples was noted, Two optical thresholds were observed at 1.58 and 2.64 eV, which are attributed to internal transition (E-5 -> T-5(2)) of Mn3+ (d(4)) and hole emission from the neutral Mn acceptor level to the valence band respectively. Bound magnetic polaron formation is considered to be the origin of ferromagnetism in our samples. (c) 2009 The Japan Society of Applied Physics
Resumo:
We present the fabrication of 1.3 mu m waveband p-doped InAs quantum dot (QD) vertical cavity surface emitting lasers (VCSELs) with an extremely simple process. The continuous-wave saturated output power of 1.1 mW with a lasing wavelength of 1280 nm is obtained at room temperature. The high-speed modulation characteristics of p-doped QD VCSELs of two different oxide aperture sizes are investigated and compared. The maximum 3 dB modulation bandwidth of 2.5 GHz can be achieved at a bias current of 7 mA for a p-doped QD VCSEL with an oxide aperture size of 10 mu m in the small signal frequency response measurements. The crucial factors for the 3 dB bandwidth limitation are discussed according to the parameters' extraction from frequency response.
Resumo:
The formation process of InAs quantum dots (QDs) on vicinal GaAs (1 0 0) substrates is studied by atomic force microscopy (AFM). It is found that after 1.2 MLs of InAs deposition, while the QDs with diameters less than the width of the multi-atomic steps are shrinking, the larger QDs are growing. Photoluminescence measurements of the uncapped QDs correspond well to the AFM structure observations of the QDs. We propose that the QDs undergo an anomalous coarsening process with modified growth kinetics resulting from the restrictions of the finite terrace sizes. A comparison between the QDs on the vicinal GaAs (1 0 0) substrates and the QDs on the exact GaAs (1 0 0) further verifies the effect of the multi-atomic steps on the formation of QDs.
Resumo:
Using a first-principles band-structure method and a special quasirandom structure (SQS) approach, we systematically calculate the band gap bowing parameters and p-type doping properties of (Zn, Mg, Be)O related random ternary and quaternary alloys. We show that the bowing parameters for ZnBeO and MgBeO alloys are large and dependent on composition. This is due to the size difference and chemical mismatch between Be and Zn(Mg) atoms. We also demonstrate that adding a small amount of Be into MgO reduces the band gap indicating that the bowing parameter is larger than the band-gap difference. We select an ideal N atom with lower p atomic energy level as dopant to perform p-type doping of ZnBeO and ZnMgBeO alloys. For N doped in ZnBeO alloy, we show that the acceptor transition energies become shallower as the number of the nearest neighbor Be atoms increases. This is thought to be because of the reduction of p-d repulsion. The N-O acceptor transition energies are deep in the ZnMgBeO quaternary alloy lattice-matched to GaN substrate due to the lower valence band maximum. These decrease slightly as there are more nearest neighbor Mg atoms surrounding the N dopant. The important natural valence band alignment between ZnO, MgO, BeO, ZnBeO, and ZnMgBeO quaternary alloy is also investigated.
Resumo:
ZnO films have been fabricated on (0 0 1), (0 1 1) and (1 1 1) SrTiO3 (STO) substrates by metal-organic chemical vapour deposition (MOCVD). It is interesting that the ZnO films on (0 0 1) and (0 1 1) STO substrates show polar and semipolar orientations, which are different from previous reports, while the same growing direction of polar ZnO with previous results is found on (1 1 1) STO. For the atomic arrangements, two orthogonal domains and a single domain are observed on (0 0 1) and (1 1 1) STO, respectively. Photoluminescence spectra show that every sample has a sharp near-band-edge emission peak at about 3.28 eV without any deep-level emission band between 1.5 and 2.8 eV, implying a high optical quality. A violet emission around 3.0 eV is observed only in ZnO films on (0 0 1) and (0 1 1) STO substrates grown at 600 degrees C, which is discussed briefly. Additionally, the semipolar ZnO does not weaken the emission efficiency along with the reduction in the polarization effect compared with polar ZnO. These results show that high-quality polar and semipolar ZnO films can be grown on STO substrates by MOCVD.
The investigation on strain relaxation and double peaks in photoluminescence of InGaN/GaN MQW layers
Resumo:
Two emission peaks were observed in the low temperature photoluminescence (LTPL) spectra of an InGaN/GaN multiple quantum well (MQW) structure before and after nanopillar fabrication. After nanopillar fabrication it is found that among the two peaks the longer wavelength peak exhibits a clear blue shift and has a much stronger enhancement in LTPL intensity than the shorter one. Combined with x-ray diffraction and spatially resolved cathodoluminescence analyses, the difference induced by nanopillar fabrication is ascribed to different strain relaxation states in the lower and upper quantum well layers. It is found that the lower QW layers of the as-grown MQW which causes the longer wavelength PL peak are more strained, while the upper ones are almost fully strain-relaxed. Therefore, the nanopillar fabrication induces much less strain relaxation in the upper part of the MQW than in the lower one.
Indium mole fraction effect on the structural and optical properties of quaternary AlInGaN epilayers
Resumo:
AlInGaN quaternary epilayers with varying In mole fraction were investigated using triple-axis x-ray diffraction and photoluminescence measurements. The indium compositional fluctuation is enhanced with increasing In mole fraction, whereas the mosaicity of the AlInGaN epilayers is determined through the GaN template quality. Based on the analysis of the temperature dependence of the PL peak position, it is found that the localization effect strengthens with increasing In mole fraction due to the larger fluctuations of the In distribution. Increasing the influence of the localized state results in increasing the emission intensity and FWHM with the In content.