929 resultados para Immune assays
Resumo:
Mesenchymal stem cells (MSCs) have regenerative properties in acute kidney injury, but their role in chronic kidney diseases is still unknown. More specifically, it is not known whether MSCs halt fibrosis. The purpose of this work was to investigate the role of MSCs in fibrogenesis using a model of chronic renal failure. MSCs were obtained from the tibias and femurs of male Wistar-EPM rats. Female Wistar rats were subjected to the remnant model, and 2 vertical bar x vertical bar 10(5) MSCs were intravenously administrated to each rat every other week for 8 weeks or only once and followed for 12 weeks. SRY gene expression was observed in female rats treated with male MSCs, and immune localization of CD73(+)CD90(+) cells at 8 weeks was also assessed. Serum and urine analyses showed an amelioration of functional parameters in MSC-treated animals at 8 weeks, but not at 12 weeks. Masson`s trichrome and Sirius red staining demonstrated reduced levels of fibrosis in MSC-treated animals. These results were corroborated by reduced vimentin, type I collagen, transforming growth factor beta, fibroblast specific protein 1 (FSP-1), monocyte chemoattractant protein 1, and Smad3 mRNA expression and alpha smooth muscle actin and FSP-1 protein expression. Renal interleukin (IL)-6 and tumor necrosis factor alpha mRNA expression levels were significantly decreased after MSC treatment, whereas IL-4 and IL-10 expression levels were increased. All serum cytokine expression levels were decreased in MSC-treated animals. Taken together, these results suggested that MSC therapy can indeed modulate the inflammatory response that follows the initial phase of a chronic renal injury. The immunosuppressive and remodeling properties of MSCs may be involved in the decreased fibrosis in the kidney. STEM CELLS 2009;27:3063-3073
Resumo:
Leptospirosis is a spirochetal zoonotic disease of global distribution with a high incidence in tropical regions. In the last 15 years it has been recognized as an important emerging infectious disease due to the occurrence of large outbreaks in warm-climate countries and, occasionally, in temperate regions. Pathogenic leptospires efficiently colonize target organs after penetrating the host. Their invasiveness is attributed to the ability to multiply in blood, adhere to host cells, and penetrate into tissues. Therefore, they must be able to evade the innate host defense. The main purpose of the present study was to evaluate how several Leptospira strains evade the protective function of the complement system. The serum resistance of six Leptospira strains was analyzed. We demonstrate that the pathogenic strain isolated from infected hamsters avoids serum bactericidal activity more efficiently than the culture-attenuated or the nonpathogenic Leptospira strains. Moreover, both the alternative and the classical pathways of complement seem to be responsible for the killing of leptospires. Serum-resistant and serum-intermediate strains are able to bind C4BP, whereas the serum-sensitive strain Patoc I is not. Surface-bound C4BP promotes factor I-mediated cleavage of C4b. Accordingly, we found that pathogenic strains displayed reduced deposition of the late complement components C5 to C9 upon exposure to serum. We conclude that binding of C4BP contributes to leptospiral serum resistance against host complement.
Resumo:
The mechanisms that govern the initial interaction between Paracoccidioides brasiliensis, a primary dimorphic fungal pathogen, and cells of the innate immunity need to be clarified. Our previous studies showed that Toll-like receptor 2 (TLR2) and TLR4 regulate the initial interaction of fungal cells with macrophages and the pattern of adaptive immunity that further develops. The aim of the present investigation was to assess the role of MyD88, an adaptor molecule used by TLRs to activate genes of the inflammatory response in pulmonary paracoccidioidomycosis. Studies were performed with normal and MyD88(-/-) C57BL/6 mice intratracheally infected with P. brasiliensis yeast cells. MyD88(-/-) macrophages displayed impaired interaction with fungal yeast cells and produced low levels of IL-12, MCP-1, and nitric oxide, thus allowing increased fungal growth. Compared with wild-type (WT) mice, MyD88(-/-) mice developed a more severe infection of the lungs and had marked dissemination of fungal cells to the liver and spleen. MyD88(-/-) mice presented low levels of Th1, Th2, and Th17 cytokines, suppressed lymphoproliferation, and impaired influx of inflammatory cells to the lungs, and this group of cells comprised lower numbers of neutrophils, activated macrophages, and T cells. Nonorganized, coalescent granulomas, which contained high numbers of fungal cells, characterized the severe lesions of MyD88(-/-) mice; the lesions replaced extensive areas of several organs. Therefore, MyD88(-/-) mice were unable to control fungal growth and showed a significantly decreased survival time. In conclusion, our findings demonstrate that MyD88 signaling is important in the activation of fungicidal mechanisms and the induction of protective innate and adaptive immune responses against P. brasiliensis.
Resumo:
Aims Periodontal disease (PD) and airway allergic inflammation (AL) present opposing inflammatory immunological features and clinically present an inverse correlation. However, the putative mechanisms underlying such opposite association are unknown. Material and Methods Balb/C mice were submitted to the co-induction of experimental PD (induced by Actinobacillus actinomycetemcomitans oral inoculation) and AL [induced by sensitization with ovalbumin (OVA) and the subsequent OVA challenges], and evaluated regarding PD and AL severity, immune response [cytokine production at periodontal tissues, and T-helper transcription factors in submandibular lymph nodes (LNs)] and infection parameters. Results PD/AL co-induction decreased PD alveolar bone loss and periodontal inflammation while experimental AL parameters were unaltered. An active functional interference was verified, because independent OVA sensitization and challenge not modulate PD outcome. PD+AL group presented decreased tumour necrosis factor-alpha (TNF-alpha), interleukin (IL)-1 beta, -gamma, IL-17A, receptor activator of nuclear factor kappa-light-chain-enhancer of activated B cells ligand and matrix metalloproteinase (MMP)-13 levels in periodontal tissues, while IL-4 and IL-10 levels were unaltered by AL co-induction. AL co-induction also resulted in upregulated T-bet and related orphan receptor gamma and downregulated GATA3 levels expression in submandibular LNs when compared with PD group. Conclusion Our results demonstrate that the interaction between experimental periodontitis and allergy involves functional immunological interferences, which restrains experimental periodontitis development by means of a skewed immune response.
Resumo:
Recombinant adenovirus or DNA vaccines encoding herpes simplex virus type 1 (HSV-1) glycoprotein D (gD) genetically fused to human papillomavirus type 16 (HPV-16) oncoproteins (E5, E6, and E7) induce antigen-specific CD8(+) T-cell responses and confer preventive resistance to transplantable murine tumor cells (TC-1 cells). In the present report, we characterized some previously uncovered aspects concerning the induction of CD8(+) T-cell responses and the therapeutic anticancer effects achieved in C57BL/6 mice immunized with pgD-E7E6E5 previously challenged with TC-1 cells. Concerning the characterization of the immune responses elicited in mice vaccinated with pgD-E7E6E5, we determined the effect of the CD4(+) T-cell requirement, longevity, and dose-dependent activation on the E7-specific CD8(+) T-cell responses. In addition, we determined the priming/boosting properties of pgD-E7E6E5 when used in combination with a recombinant serotype 68 adenovirus (AdC68) vector encoding the same chimeric antigen. Mice challenged with TC-1 cells and then immunized with three doses of pgD-E7E6E5 elicited CD8(+) T-cell responses, measured by intracellular gamma interferon (IFN-gamma) and CD107a accumulation, to the three HPV-16 oncoproteins and displayed in vivo antigen-specific cytolytic activity, as demonstrated with carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled target cells pulsed with oligopeptides corresponding to the H-2D(b)-restricted immunodominant epitopes of the E7, E6, or E5 oncoprotein. Up to 70% of the mice challenged with 5 x 10(5) TC-1 cells and immunized with pgD-E7E6E5 controlled tumor development even after 3 days of tumor cell challenge. In addition, coadministration of pgD-E7E6E5 with DNA vectors encoding pGM-CSF or interleukin-12 (IL-12) enhanced the therapeutic antitumor effects for all mice challenged with TC-1 cells. In conclusion, the present results expand our previous knowledge on the immune modulation properties of the pgD-E7E6E5 vector and demonstrate, for the first time, the strong antitumor effects of the DNA vaccine, raising promising perspectives regarding the development of immunotherapeutic reagents for the control of HPV-16-associated tumors.
Resumo:
Background and Objective: Cytolethal distending toxin (CDT) is a genotoxin produced by Aggregatibacter actinomycetemcomitans. In spite of its association with pathogenesis, little is known about the humoral immune response against the CDT. This study aimed to test whether subgingival colonization and humoral response to A. actinomycetemcomitans would lead to a response against CDT. Material and Methods: Sera from periodontally healthy, localized and generalized aggressive periodontitis and chronic periodontitis subjects (n = 80) were assessed for immunoglobulin G titers to A. actinomycetemcomitans serotypes a/b/c and to each CDT subunit (CdtA, CdtB and CdtC) by ELISA. A. actinomycetemcomitans subgingival levels and neutralization of CDT activity were also analyzed. Results: Sera from 75.0% localized and 81.8% generalized aggressive periodontitis patients reacted to A. actinomycetemcomitans. A response to serotype b was detected in localized (66.7%) and generalized aggressive periodontitis (54.5%). Reactivity to A. actinomycetemcomitans correlated with subgingival colonization (R = 0.75, p < 0.05). There was no correlation between A. actinomycetemcomitans colonization or response to serotypes and the immunoglobulin G response to CDT subunits. Titers of immunoglobulin G to CdtA and CdtB did not differ among groups; however, sera of all generalized aggressive periodontitis patients reacted to CdtC. Neutralization of CDT was not correlated with levels of antibodies to CDT subunits. Conclusion: Response to CdtA and CdtB did not correlate with the periodontal status of the subject in the context of an A. actinomycetemcomitans infection. However, a response to CdtC was found in sera of generalized but not of localized aggressive periodontitis subjects. Differences in response to CdtC between generalized and localized aggressive periodontitis subjects indicate that CDT could be expressed differently by the infecting strains. Alternatively, the antibody response to CdtC could require the colonization of multiple sites.
Resumo:
Background: Inhibitory signals mediated via molecules such as programmed death-1 (PD-1) play a critical role in downmodulating immune responses and maintaining peripheral tolerance. We investigated the involvement of cytokines and PD-1 engagement in mediating the T-cell unresponsiveness to bacterial and ubiquitous antigens in periodontal diseases. Methods: Gingival and peripheral blood samples from healthy individuals and patients with chronic periodontitis were collected and used for the subsequent assays. Leukocytes in the lesion site and blood were evaluated using flow cytometry. The production of interferon-gamma, interleukin-10, and transforming growth factor-P proteins was evaluated by enzyme-linked immunosorbent assay (ELISA), and the presence of PD-1+cells in the inflamed gingiva was confirmed by immunofluorescence confocal microscopy for CD4 and PD-1 colocalization. Results: T cells from patients with chronic periodontitis proliferated poorly in response to Aggregatibacter actinomycetem comitans (previously Actinobacillus actinomycetemcomitans) antigen. T-cell unresponsiveness was not associated with imbalanced cytokine production. However, T cells from patients with chronic periodontitis expressed significantly higher levels of PD-1 either upon isolation or after culture with antigens. Moreover, PD-1 blocking did not result in significant T-cell proliferation in cells cultured with phytohemagglutinin or bacterial antigens. The blockade of PD-1 resulted in the increased production of IFN-gamma. In addition, CD4+ and CD8+ T cells expressing PD-1 accumulated in lesions with chronic periodontitis. Conclusion: These data show that PD-1 engagement could be involved in the modulation of IFN-gamma production by T cells in patients with chronic periodontitis. J Periodontol 2009,80:1833-1844.
Resumo:
Coccidiosis are the major parasitic diseases in poultry and other domestic animals including the domestic rabbit (Oryctolagus cuniculus). Eleven distinct Eimeria species have been identified in this host, but no PCR-based method has been developed so far for unequivocal species differentiation. In this work, we describe the development of molecular diagnostic assays that allow for the detection and discrimination of the 11 Eimeria species that infect rabbits. We determined the nucleotide sequences of the ITS1 ribosomal DNAs and designed species-specific primers for each species. We performed specificity tests of the assays using heterologous sets of primers and DNA samples, and no cross-specific bands were observed. We obtained a detection limit varying from 500 fg to 1 pg, which corresponds approximately to 0.8-1.7 sporulated oocysts, respectively. The test reported here showed good reproducibility and presented a consistent sensitivity with three different brands of amplification enzymes. These novel diagnostic assays will permit population surveys to be performed with high sensitivity and specificity, thus contributing to a better understanding of the epidemiology of this important group of coccidian parasites. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Leptin is involved in the control of energy storage by the body. Low serum leptin levels, as seen in starvation, are associated with impaired inflammatory T cell responses that can be reversed by exogenous leptin. Common variable immunodeficiency (CVID) is characterized by hypogammaglobulinemia and recurrent infections. Several defects in T cell function have also been described, and allergy, autoimmune disease, and lymphomas or other malignancies can be present. Previous studies in Brazilian CVID patients have shown that, in contrast with mononuclear cells from healthy controls, CVID cells cultured with phytohemagglutinin and added leptin increased the proliferative response and decreased activation-induced apoptosis. Interleukin (IL)-2 and especially IL-4 production also increased significantly, although the effects of exposure to leptin were not observed uniformly in CVID patients. The majority, however, responded in some degree, and some exhibited completely restored values of the four parameters. These remarkable results indicate leptin could be used to improve immune function in these patients. On the other hand, we found no specific correlation between serum leptin levels and the number of infectious events over a 24-month period, presence of autoimmunity, allergies, or cancer in these patients. The results suggest that the absolute value of serum leptin does not determine the clinical behavior of patients or responses to leptin in vitro. Of note is the divergence between serum leptin, response to leptin in vitro, and the presence of autoimmunity, indicating the need to identify the cellular and molecular players involved in the regulation of the immune response by leptin in CVID.
Resumo:
The protective role of specific antibodies against Paracoccidioides brasiliensis is controversial. In the present study, we analyzed the effects of monoclonal antibodies on the major diagnostic antigen (gp43) using in vitro and in vivo P. brasiliensis infection models. The passive administration of some monoclonal antibodies (MAbs) before and after intratracheal or intravenous infections led to a reduced fungal burden and decreased pulmonary inflammation. The protection mediated by MAb 3E, the most efficient MAb in the reduction of fungal burden, was associated with the enhanced phagocytosis of P. brasiliensis yeast cells by J774.16, MH-S, or primary macrophages. The ingestion of opsonized yeast cells led to an increase in NO production by macrophages. Passive immunization with MAb 3E induced enhanced levels of gamma interferon in the lungs of infected mice. The reactivity of MAb 3E against a panel of gp43-derived peptides suggested that the sequence NHVRIPIGWAV contains the binding epitope. The present work shows that some but not all MAbs against gp43 can reduce the fungal burden and identifies a new peptide candidate for vaccine development.
Resumo:
The Duffy binding protein of Plasmodium vivax (DBP) is a critical adhesion ligand that participates in merozoite invasion of human Duffy-positive erythrocytes. A small outbreak of P. vivax malaria, in a village located in a non-malarious area of Brazil, offered us an opportunity to investigate the DBP immune responses among individuals who had their first and brief exposure to malaria. Thirty-three individuals participated in the five cross-sectional surveys, 15 with confirmed P. vivax infection while residing in the outbreak area (cases) and 18 who had not experienced malaria (non-cases). In the present study, we found that only 20% (three of 15) of the individuals who experienced their first P. vivax infection developed an antibody response to DBP; a secondary boosting can be achieved with a recurrent P. vivax infection. DNA sequences from primary/recurrent P. vivax samples identified a single dbp allele among the samples from the outbreak area. To investigate inhibitory antibodies to the ligand domain of the DBP (cysteine-rich region II, DBP(II)), we performed in vitro assays with mammalian cells expressing DBP(II) sequences which were homologous or not to those from the outbreak isolate. In non-immune individuals, the results of a 12-month follow-up period provided evidence that naturally acquired inhibitory antibodies to DBP(II) are short-lived and biased towards a specific allele.
Resumo:
The antioxidant activity of methanol extracts from Passiflora edulis and Passiflora alata pulp, and P. edulis rinds, healthy or infected with the passion fruit woodiness virus (PWV), was investigated using the oxidant activities of the neutrophil and the neutrophil granule enzyme myeloperoxidase (MPO), both playing key roles in inflammation. The reactive oxygen species produced by stimulated neutrophils were evaluated by lucigenin-enhanced chemiluminescence (CL) and the activity of purified MPO was measured by SIEFED (Specific Immunological Extraction Followed by Enzymatic Detection), a technique for studying the direct interaction of a compound with the enzyme. The rind extracts of P. edulis possessed higher and dose-dependent inhibitory effects on CL response and on the peroxidase activity of MPO than total pulp extracts from both passion fruit species. The quantification of isoorientin in the extracts showed a correlation with their antioxidant activity, suggesting the potential of P. edulis rinds as functional food or as a possible source of natural flavonoids. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In young cells of leaf meristems the progenitors of chloroplasts are small organelles known as proplastids, which divide and differentiate into chloroplasts. However, in the absence of light, proplastids undergo a different sequence of development and become etioplasts. When light is supplied to etiolated plants during the "greening" process, etioplasts differentiate into chloroplasts containing chlorophyll. An important light dependent step in chlorophyll biosynthesis is the photoreduction of protochlorophyllide to chlorophyllide by the NADPH:protochlorophyllide reductase (PCR) enzyme. This enzyme is present at high activity only in etiolated tissue and during early stages of light-induced chlorophyll synthesis. The enzyme and its corresponding mRNAs decrease dramatically with prolonged exposure to light. We have investigated the light-dependent transcriptional regulation of a PCR gene in greening maize leaf cells using a transient expression assay based on microprojectile bombardment. The promoter region was isolated and cloned into a ?-glucuronidase (GUS) reporter gene expression plasmid. We have used this chimeric plasmid in tungsten particle bombardment of both etiolated and greening maize seedling leaves to determine whether the cloned promoter region contains regulatory sequences that control light-responsive PCR gene expression.