949 resultados para Cells In-vitro
Resumo:
Our objectives were to investigate the possible role of VEGFA in bovine placenta steroid synthesis and to determine whether cloned derived placental cells present similar responses as non-cloned ones. Placental cells from cloned (term) and non-cloned (days 90, 150, 210 and term) pregnancies were isolated and treated with VEGFA (50 ng/ml) for 24, 48 or 96 h. Progesterone (P-4) and estrone sulfate (E1S) were assessed by RIA, while aromatase P450-positive cells were quantified using the point counting test. The percentages of steroidogenic and non-steroidogenic populations were determined by flow cytometry. VEGFA augmented or decreased P-4 and E1S concentrations as well as aromatase P450-positive cell density, depending on gestational age and time in culture. The percentage of steroidogenic cells was lower than that of non-steroidogenic ones for each culture time (P < 0.05). VEGFA treatment did not change the proportion of steroidogenic and non-steroidogenic cells. Placental cells derived from cloned pregnancies presented higher concentrations of E1S and P4 than the non-cloned group. However, aromatase P450-positive cells were similar between groups (P > 0.05). VEGFA treatment altered P-4 and E1S levels in placental cells depending on type of gestation. These results suggest that VEGFA acts locally in the bovine placenta to modulate steroidogenesis during gestation, but in a different pattern between cloned and non-cloned derived placental cells at term. Therefore, this factor can be considered an important regulator of placental development and function. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this study, we characterized the conventional physicochemical properties of the complexes formed by plasmid DNA (pDNA) and cationic liposomes (CL) composed of egg phosphatidylcholine (EPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) (50/25/25% molar ratio). We found that these properties are nearly unaffected at the studied ranges when the molar charge ratio (R-+/-) between the positive charge from the CL and negative charge from pDNA is not close to the isoneutrality region (R-+/- = 1). However, the results from in vitro transfection of HeLa cells showed important differences when R-+/- is varied, indicating that the relationships between the physicochemical and biological characteristics were not completely elucidated. To obtain information regarding possible liposome structural modifications, small-angle X-ray scattering (SAXS) experiments were performed as a function of R-+/- to obtain correlations between structural, physicochemical, and transfection properties. The SAXS results revealed that pDNA/CL complexes can be described as being composed of single bilayers, double bilayers, and multiple bilayers, depending on the R-+/- value. Interestingly, for R-+/- = 9, 6, and 3, the system is composed of single and double bilayers, and the fraction of the latter increases with the amount of DNA (or a decreasing R-+/-) in the system. This information is used to explain the transfection differences observed at an R-+/- = 9 as compared to R-+/- = 3 and 6. Close to the isoneutrality region (R-+/- = 1.8), there was an excess of pDNA, which induced the formation of a fraction of aggregates with multiple bilayers. These aggregates likely provide additional resistance against the release of pDNA during the transfection phenomenon, reflected as a decrease in the transfection level. The obtained results permitted proper correlation of the physicochemical and structural properties of pDNA/CL complexes with the in vitro transfection of HeLa cells by these complexes, contributing to a better understanding of the gene delivery process.
Resumo:
Introduction: Toxoplasmosis is usually a benign infection, except in the event of ocular, central nervous system (CNS), or congenital disease and particularly when the patient is immunocompromised. Treatment consists of drugs that frequently cause adverse effects; thus, newer, more effective drugs are needed. In this study, the possible activity of artesunate, a drug successfully being used for the treatment of malaria, on Toxoplasma gondii growth in cell culture is evaluated and compared with the action of drugs that are already being used against this parasite. Methods: LLC-MK2 cells were cultivated in RPMI medium, kept in disposable plastic bottles, and incubated at 36 degrees C with 5% CO2. Tachyzoites of the RH strain were used. The following drugs were tested: artesunate, cotrimoxazole, pentamidine, pyrimethamine, quinine, and trimethoprim. The effects of these drugs on tachyzoites and LLC-MK2 cells were analyzed using nonlinear regression analysis with Prism 3.0 software. Results: Artesunate showed a mean tachyzoite inhibitory concentration (IC50) of 0.075 mu M and an LLC MK2 toxicity of 2.003 mu M. Pyrimethamine was effective at an IC50 of 0.482 mu M and a toxicity of 11.178 mu M. Trimethoprim alone was effective against the in vitro parasite. Cotrimoxazole also was effective against the parasite but at higher concentrations than those observed for artesunate and pyrimethamine. Pentamidine and quinine had no inhibitory effect over tachyzoites. Conclusions: Artesunate is proven in vitro to be a useful alternative for the treatment of toxoplasmosis, implying a subsequent in vivo effect and suggesting the mechanism of this drug against the parasite.
Resumo:
From cultures of thermophilic soil fungus Humicola grisea var thermoidea, a delta-lactam derivative (3-(2-(4-hydroxyphenyl)-2-oxoethyl)-5,6-dihydropyridin-2( 1H)-one) that displayed anti-allergic activity was isolated, which was predicted by in silico computational chemistry approaches. The in vitro anti-allergic activity was investigated by beta-hexosaminidase release assay in rat basophilic leukaemia RBL-2H3 cells. The delta-lactam derivative exhibited similar anti-allergic activity (IC50 = 18.7 +/- 6.7 mu M) in comparison with ketotifen fumarate (IC50 = 15.0 +/- 1.3 mu M) and stronger anti-allergic activity than azelastine (IC50 = 32.0 mu M). Also, the MTT cytotoxicity assay with RBL-2H3 cells showed that delta-lactam does not display cytotoxicity at concentrations lower than 50 mu M. This study suggests that the delta-lactam derivative has the potential to be used as a lead compound in the development of anti-allergic drugs for clinical use in humans.
Resumo:
Objective: The purpose of this study was to analyze the influence of two different irradiation times with 85mW/cm(2) 830nm laser on the behavior of mouse odontoblast-like cells. Background data: The use of low-level laser therapy (LLLT) to stimulate pulp tissue is a reality, but few reports relate odontoblastic responses to irradiation in in vitro models. Methods: Odontoblast-like cells (MDPC-23) were cultivated and divided into three groups: control/nonirradiated (group 1); or irradiated with 85mW/cm(2), 830nm laser for 10 sec (0.8 J/cm(2)) (group 2); or for 50 sec (4.2 J/cm(2)) (group 3) with a wavelength of 830 nm. After 3, 7, and 10 days, it was analyzed: growth curve and cell viability, total protein content, alkaline phosphatase (ALP) activity, calcified nodules detection and quantification, collagen immunolocalization, vascular endothelial growth factor (VEGF) expression, and real-time polymerase chain reaction (PCR) for DMP1 gene. Data were analyzed by Kruskall-Wallis test (alpha = 0.05). Results: Cell growth was smaller in group 2 (p < 0.01), whereas viability was similar in all groups and at all periods. Total protein content and ALP activity increased on the 10th day with 0.8 J/cm(2) (p < 0.01), as well as the detection and quantification of mineralization nodules (p < 0.05), collagen, and VEGF expression (p < 0.01). The expression of DMP1 increased in all groups (p < 0.05) compared with control at 3 days, except for 0.8 J/cm(2) at 3 days and control at 10 days. Conclusions: LLLT influenced the behavior of odontoblast-like cells; the shorter time/smallest energy density promoted the expression of odontoblastic phenotype in a more significant way.
Resumo:
Phosphoethanolamine (Pho-s) is a compound involved in phospholipid turnover, acting as a substrate for many phospholipids of the cell membranes, especially phosphatidylcholine. We recently reported that synthetic Pho-s has potent effects on a wide variety of tumor cells. To determine if Pho-s has a potential antitumor activity, in this study we evaluated the activity of Pho-s against the B16-F10 melanoma both in vitro and in mice bearing a dorsal tumor. The treatment of B16F10 cells with Pho-s resulted in a dose-dependent inhibition of cell proliferation. At low concentrations, this activity appears to be involved in the arrest of the cell cycle at G2/M, while at high concentrations Pho-s induces apoptosis. In accordance with these results, the loss of mitochondrial potential and increased caspase-3 activity suggest that Phos has dual antitumor effects; i.e. it induces apoptosis at high concentrations and modulates the cell cycle at lower concentrations. In vivo, we evaluated the effect of Pho-s in mice bearing B16-F10 melanoma. The results show that Pho-s reduces the tumoral volume increasing survival rate. Furthermore, the tumor doubling time and tumor delays were substantially reduced when compared with untreated mice. Histological analyses reveal that Pho-s induces changes in cell morphology, typical characteristics of apoptosis, in addition the large areas of necrosis correlating with a reduction of tumor size. The results presented here support the hypothesis that Pho-s has antitumor effects by the induction of apoptosis as well as the inhibition of cell proliferation by arrest at G2/M. Thus, Pho-s can be regarded as a promising agent for the treatment of melanoma. Published by Elsevier Masson SAS.
Resumo:
Lactobacillus sakei 1 is a food isolate that produces a heat-stable antimicrobial peptide (sakacin 1, a class ha bacteriocin) inhibitory to the opportunistic pathogen Listeria monocytogenes. Bacterial isolates with antimicrobial activity may be useful for food biopreservation and also for developing probiotics. To evaluate the probiotic potential of L. sakei I, it was tested for (i) in vitro gastric resistance (with synthetic gastric juice adjusted to pH 2.0, 2.5, or 3.0); (ii) survival and bacteriocin production in the presence of bile salts and commercial prebiotics (inulin and oligofructose); (iii) adhesion to Caco-2 cells; and (iv) effect on the adhesion of L. monocytogenes to Caco-2 cells and invasion of these cells by the organism. The results showed that L. sakei I survival in gastric environment varied according to pH, with the maximum survival achieved at pH 3.0, despite a 4-log reduction of the population after 3 h. Regarding the bile salt tolerance and influence of prebiotics, it was observed that L. sakei 1 survival rates were similar (P > 0.05) for all de Man Rogosa Shame (MRS) broth formulations when tests were done after 4 h of incubation. However, after incubation for 24 h, the survival of L. sakei 1 in MRS broth was reduced by 1.8 log (P < 0.001), when glucose was replaced by either inulin or oligofructose (without Oxgall). L. sakei 1 was unable to deconjugate bile salts, and there was a significant decrease (1.4 log) of the L. sakei 1 population in regular MRS broth plus Oxgall (P < 0.05). In spite of this, tolerance levels of L. sakei 1 to bile salts were similar in regular MRS broth and in MRS broth with oligofructose. Lower bacteriocin production was observed in MRS broth when inulin (3,200 AU/ml) or oligofructose (2,400 AU/ml) was used instead of glucose (6,400 AU/ml). L. sakei I adhered to Caco-2 cells, and its cell-free pH-neutralized supernatant containing sakacin I led to a significant reduction of in vitro listerial invasion of human intestinal Caco-2 cells.
Resumo:
The influences of age in calves' immune system are described in their first phase of life. We hypothesized that variations that occur in the main mechanisms of lung innate response can help to identify periods of greater susceptibility to the respiratory diseases that affect calves in the first stage of their life. This study aimed to evaluate the innate immune system. Nine healthy calves were monitored for 3 mo and 8 immunologic evaluations were performed. Bronchoalveolar lavage samples were recovered by bronchoscopy. The alveolar macrophages in samples were identified by protein expression of cluster of differentiation 14 (CD14) and underwent functional evaluation of phagocytosis (Staphylococcus aureus stained with propidium iodide and Escherichia coli). Data was assessed by one-way ANOVA (unstacked and parametric) and the Mann-Whitney test (nonparametric). Functional alterations in CD14-positive phagocytes were observed, with punctual higher intensity of phagocytosis in the third week and its decrease starting at 45 d of life. A gradual increase in phagocytosis rate was observed starting at this date. It is concluded that from 45 d of life on, alveolar macrophages have less phagocytic capacity but more cells perform this function. We suggest that this occurs because lung macrophages of calves start to maintain their immune response without passive immunity influence. Until 90 d of life, calves did not achieve the stability to conclude the maturation of local innate immune response.
Resumo:
Iodide excess acutely downregulates NIS mRNA expression, as already demonstrated. PCCl3 cells treated or not with Nal, Nal + NaClO4 or Nal + Methimazole, for 30 min to 24 h, were used to further explore how iodide reduces NIS gene expression. NIS mRNA expression was evaluated by Real-Time PCR; its poly(A) tail length, by RACE-PAT; its translation rate, by polysome profile; total NIS content, by Western blotting. NIS mRNA decay rate was evaluated in actinomycin-D-treated cells, incubated with or without Nal for 0-6 h. Iodide treatment caused a reduction in NIS mRNA expression, half-life, poly(A) tail length, recruitment to ribosomes, as well as NIS protein expression. Perchlorate, but not methimazole, prevented these effects. Therefore, reduced poly(A) tail length of NIS mRNA seems to be related to its decreased half-life, in addition to its translation impairment. These data provide new insights about the molecular mechanisms involved in the rapid and posttranscriptional inhibitory effect of iodide on NIS expression. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The goals of this study are to evaluate in vitro compatibility of magnetic nanomaterials and their therapeutic potential against cancer cells. Highly stable ionic magnetic fluid sample (maghemite, gamma-Fe2O3) and Selol were incorporated into polymeric nanocapsules by nanoprecipitation method. The cytotoxic effect of Selol-loaded magnetic nanocapsules was assessed on murine melanoma (B16-F10) and oral squamous cell carcinoma (OSCC) cell lines following AC magnetic field application. The influence of different nanocapsules on cell viability was investigated by colorimetric MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. In the absence of AC magnetic field Selol-loaded magnetic nanocapsules, containing 100 mu g/mL Selol plus 5 x 10(12) particle/mL, showed antitumoral activity of about 50% on B16-F10 melanoma cells while OSCC carcinoma cells demonstrated drug resistance at all concentrations of Selol and magnetic fluid (range of 100-500 mu g/mL Selol and 5 x 10(12) -2.5 x 10(13) particle/mL). On the other hand, under AC applied fields (1 MHz and 40 Oe amplitude) B16-F10 cell viability was reduced down to 40.5% (+/- 3.33) at the highest concentration of nanoencapsulated Selol. The major effect, however, was observed on OSCC cells since the cell viability drops down to about 33.3% (+/- 0.38) under application of AC magnetic field. These findings clearly indicate that the Selol-loaded magnetic nanocapsules present different toxic effects on neoplastic cell lines. Further, the cytotoxic effect was maximized under AC magnetic field application on OSCC, which emphasizes the effectiveness of the magnetohyperthermia approach. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3680541]
Resumo:
The aims of this study were two fold; to develop magnetoliposomes (MLs) loaded with zinc phthalocyanine (ZnPc) complexed with cucurbituril (CB) (CB:ZnPc-MLs) and to evaluate their in vitro photodynamic (PD) and/or hyperthermia (HT) effects while using melanoma cells (B16-F10) as model. The liposomal formulations were characterized by both average diameter and zeta potential. The vesicle average size ranged from 150 to 200 nm and the polydispersity index (PdI) from 0.093 to 0.230. The zeta potential was significantly positive with values between 48 and 57 mV. The cell viability (CV) after PD and HT treatments was assessed by colorimetric MTI method. Melanoma cells were initially treated with the liposome formulation without light and magnetic field application, revealing cell viability not different from the control cells (p > 0.05). Photodynamic and hyperthermia assays were also applied separately, demonstrating that PD is more effective than HT in reducing the CV of the neoplastic cells. Combined application of both PD and HT treatments was even more effective in reducing the CV of B16-F10 cells. At the highest light dose (2 J/cm(2)) and under magnetic field activation the CV was about half than PD applied alone. Therefore, the use of the photosensitizer-loaded magnetoliposome for combined photodynamic therapy (PDT) and magnetohyperthermia (MHT) application can be considered as a potential tool to treat malignant melanoma. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Ehrlichia canis, etiologic agent of Canine Monocytic Ehrlichiosis, is an obligatory intracellular bacterium that parasitizes monocytes and macrophages. In this study we analyzed the role of the cytoskeleton specifically actin microfilaments and microtubules, components of inositol phospholipid signaling pathway such as phospholipase C (PLC), protein kinase (PTK) and calcium channels as well as the role of iron in the E. canis proliferation in DH82 cells. Different inhibitory compounds were used for each component: Cytochalasin D (inhibits actin polymerization), Nocodazole (inhibits microtubule polymerization), Neomycin (PLC inhibitor), Genistein (PTK inhibitor), Verapamil (calcium channel blocker) and Deferoxamine (iron chelator). We observed a significant decrease in the total number of bacteria in infected cells treated suggesting that these cellular components analized are essentials to E. canis proliferation.
Resumo:
The embryonic developmental block occurs at the 8-cell stage in cattle and is characterized by a lengthening of the cell cycle and an increased number of embryos that stop development. The maternal-embryonic transition arises at the same stage resulting in the transcription of many genes. Gene expression studies during this stage may contribute to the understanding of the physiological mechanisms involved in the maternal-embryonic transition. Herein we identified genes differentially expressed between embryos with high or low developmental competence to reach the blastocyst stage using differential display PCR. Embryos were analysed according to developmental kinetics: fast cleavage embryos showing 8 cells at 48 h post insemination (hpi) with high potential of development (F8), and embryos with slow cleavage presenting 4 cells at 48 hpi (54) and 8 cells at 90 hpi (S8), both with reduced rates of development to blastocyst. The fluorescence DDPCR method was applied and allowed the recovery of 176 differentially expressed bands with similar proportion between high and low development potential groups (52% to F8 and 48% in S4 and S8 groups). A total of 27 isolated fragments were cloned and sequenced, confirming the expected primer sequences and allowing the identification of 27 gene transcripts. PI3KCA and ITM2B were chosen for relative quantification of mRNA using real-time PCR and showed a kinetic and a time-related pattern of expression respectively. The observed results suggest the existence of two different embryonic genome activation mechanisms: fast-developing embryos activate genes related to embryonic development, and slow-developing embryos activate genes related to cellular survival and/or death.
Resumo:
Antitumor activities have been described in selol, a hydrophobic mixture of molecules containing selenium in their structure, and also in maghemite magnetic nanoparticles (MNPs). Both selol and MNPs were co-encapsulated within poly(lactic-co-glycolic acid) (PLGA) nanocapsules for therapeutic purposes. The PLGA-nanocapsules loaded with MNPs and selol were labeled MSE-NC and characterized by transmission and scanning electron microscopy, electrophoretic mobility, photon correlation spectroscopy, presenting a monodisperse profile, and positive charge. The antitumor effect of MSE-NC was evaluated using normal (MCF-10A) and neoplastic (4T1 and MCF-7) breast cell lines. Nanocapsules containing only MNPs or selol were used as control. MTT assay showed that the cytotoxicity induced by MSE-NC was dose and time dependent. Normal cells were less affected than tumor cells. Cell death occurred mainly by apoptosis. Further exposure of MSE-NC treated neoplastic breast cells to an alternating magnetic field increased the antitumor effect of MSE-NC. It was concluded that selol-loaded magnetic PLGA-nanocapsules (MSE-NC) represent an effective magnetic material platform to promote magnetohyperthermia and thus a potential system for antitumor therapy.
Resumo:
In order to provide information that may help researchers to understand the main cause(s) of differences in bull fertility frequently observed in field trials, this study aimed to investigate conception rates as well as several in vitro sperm characteristics of different sires of unknown fertility utilized in a Timed-AI (TAI) program. Suckled Nelore cows submitted to the same TAI protocol were allocated into eight breeding groups of approximately 120 animals each. Frozen semen doses from three Angus bulls and three different batches from each bull were utilized. Approximately 100 doses from each batch were used in TAI. Sires, batches and AI technicians were equally distributed across breeding groups. Cows were examined for pregnancy diagnosis 40 d after TAI. For in vitro sperm analyses, the same thawing procedure was repeated in the laboratory to mimic field conditions. The following in vitro sperm characteristics were assessed: computerized motility, thermal resistance, plasma and acrosomal membrane integrity, lipid peroxidation, morphology, morphometry and chromatin structure. No effect of breeding group, body condition score, AI technician and sire was observed. However, some significant differences among bulls were detected in laboratory analyses. Semen from sire presenting numerically lower (P > 0.05) pregnancy/AI also presented lower (P < 0.05) values in all sperm characteristics analyzed in thermal resistance test at 4 h (Total Motility, Progressive Motility, Average Path Velocity, Straight-Line Velocity, Curvilinear Velocity, Amplitude of Lateral Head Displacement, Beat Cross Frequency, Straightness, Linearity, and Percentage of Rapidly Moving Cells), higher (P < 0.05) Major and Total Defects in sperm morphological test, lower (P < 0.05) Length, Ellipticity and Fourier parameter (Fourier 0) in sperm morphometric analysis as well as higher (P < 0.05) chromatin heterogeneity. It was concluded that, although no bull effect was observed in the field experiment, the sire that presented numerically lower pregnancy/AI also presented lower semen quality according to the laboratory analyses performed. (C) 2012 Elsevier B.V. All rights reserved.