962 resultados para CALCIUM SILICATE-BASED MATERIALS
Resumo:
INTRODUCTION: Osteoset(®) T is a calcium sulphate void filler containing 4% tobramycin sulphate, used to treat bone and soft tissue infections. Despite systemic exposure to the antibiotic, there are no pharmacokinetic studies in humans published so far. Based on the observations made in our patients, a model predicting tobramycin serum levels and evaluating their toxicity potential is presented. METHODS: Following implantation of Osteoset(®) T, tobramycin serum concentrations were monitored systematically. A pharmacokinetic analysis was performed using a non-linear mixed effects model based on a one compartment model with first-degree absorption. RESULTS: Data from 12 patients treated between October 2006 and March 2008 were analysed. Concentration profiles were consistent with the first-order slow release and single-compartment kinetics, whilst showing important variability. Predicted tobramycin serum concentrations depended clearly on both implanted drug amount and renal function. DISCUSSION AND CONCLUSION: Despite the popularity of aminoglycosides for local antibiotic therapy, pharmacokinetic data for this indication are scarce, and not available for calcium sulphate as carrier material. Systemic exposure to tobramycin after implantation of Osteoset(®) T appears reassuring regarding toxicity potential, except in case of markedly impaired renal function. We recommend in adapting the dosage to the estimated creatinine clearance rather than solely to the patient's weight.
Resumo:
The production and use of biofuels has increased in the present context of sustainable development. Biofuel production from plant biomass produces not only biofuel or ethanol but also co-products containing lignin, modified lignin, and lignin derivatives. This research investigated the utilization of lignin-containing biofuel co-products (BCPs) in pavement soil stabilization as a new application area. Laboratory tests were conducted to evaluate the performance and the moisture susceptibility of two types of BCP-treated soil samples compared to the performance of untreated and traditional stabilizer-treated (fly ash) soil samples. The two types of BCPs investigated were (1) a liquid type with higher lignin content (co-product A) and (b) a powder type with lower lignin content (co-product B). Various additive combinations (co-product A and fly ash, co-products A and B, etc.) were also evaluated as alternatives to stand-alone co-products. Test results indicate that BCPs are effective in stabilizing the Iowa Class 10 soil classified as CL or A-6(8) and have excellent resistance to moisture degradation. Strengths and moisture resistance in comparison to traditional additives (fly ash) could be obtained through the use of combined additives (co-product A + fly ash; co-product A + co-product B). Utilizing BCPs as a soil stabilizer appears to be one of the many viable answers to the profitability of the bio-based products and the bioenergy business. Future research is needed to evaluate the freeze-thaw durability and for resilient modulus characterization of BCP-modified layers for a variety of pavement subgrade and base soil types. In addition, the long-term performance of these BCPs should be evaluated under actual field conditions and traffic loadings. Innovative uses of BCP in pavement-related applications could not only provide additional revenue streams to improve the economics of biorefineries, but could also serve to establish green road infrastructures.
Resumo:
Road dust is caused by wind entraining fine material from the roadway surface and the main source of Iowa road dust is attrition of carbonate rock used as aggregate. The mechanisms of dust suppression can be considered as two processes: increasing particle size of the surface fines by agglomeration and inhibiting degradation of the coarse material. Agglomeration may occur by capillary tension in the pore water, surfactants that increase bonding between clay particles, and cements that bind the mineral matter together. Hygroscopic dust suppressants such as calcium chloride have short durations of effectiveness because capillary tension is the primary agglomeration mechanism. Somewhat more permanent methods of agglomeration result from chemicals that cement smaller particles into a mat or larger particles. The cements include lignosulfonates, resins, and asphalt products. The duration of the cements depend on their solubility and the climate. The only dust palliative that decreases aggregate degradation is shredded shingles that act as cushions between aggregate particles. It is likely that synthetic polymers also provide some protection against coarse aggregate attrition. Calcium chloride and lignosulfonates are widely used in Iowa. Both palliatives have a useful duration of about 6 months. Calcium chloride is effective with surface soils of moderate fine content and plasticity whereas lignin works best with materials that have high fine content and high plasticity indices. Bentonite appears to be effective for up to two years and works well with surface materials having low fines and plasticity and works well with limestone aggregate. Selection of appropriate dust suppressants should be based on characterization of the road surface material. Estimation of dosage rates for potential palliatives can be based on data from this report, from technical reports, information from reliable vendors, or laboratory screening tests. The selection should include economic analysis of construction and maintenance costs. The effectiveness of the treatment should be evaluated by any of the field performance measuring techniques discussed in this report. Novel dust control agents that need research for potential application in Iowa include; acidulated soybean oil (soapstock), soybean oil, ground up asphalt shingles, and foamed asphalt. New laboratory evaluation protocols to screen additives for potential effectiveness and determine dosage are needed. A modification of ASTM D 560 to estimate the freeze-thaw and wet-dry durability of Portland cement stabilized soils would be a starting point for improved laboratory testing of dust palliatives.
Resumo:
Bio-binders can be utilized as asphalt modifiers, extenders, and replacements for conventional asphalt in bituminous binders. From the rheology results of Phase I of this project, it was found that the bio-binders tested had good performance, similar to conventional asphalt, except at low temperatures. Phase II of this project addresses this shortcoming and evaluates the Superpave performance of laboratory mixes produced with the enhanced bio-binders. The main objective of this research was to develop a bio-binder capable of replacing conventional asphalt in flexible pavements by incorporating ground tire rubber (GTR) into bio-oil derived from fast pyrolysis of agriculture and forestry residues. The chemical compatibility of the new bio-binder with GTR was assessed, and the low-temperature performance of the bio-binders was enhanced by the use of GTR. The newly developed binder, which consisted of 80 percent conventional binder and 20 percent rubber-modified bio-oil (85 percent bio-oil with 15 percent GTR), was used to produce mixes at two different air void contents, 4 and 7 percent. The laboratory performance test results showed that the performance of the newly developed bio-binder mixes is as good as or better than conventional asphalt mixes for fatigue cracking, rutting resistance, moisture sensitivity, and low-temperature cracking. These results need to be validated in field projects in order to demonstrate adequate performance for this innovative and sustainable technology for flexible pavements.
Resumo:
The function of dowel bars is the transfer of a load across the transverse joint from one pavement slab to the adjoining slab. In the past, these transfer mechanisms have been made of steel. However, pavement damage such as loss of bonding, deterioration, hollowing, cracking and spalling start to occur when the dowels begin to corrode. A significant amount of research has been done to evaluate alternative types of materials for use in the reinforcement of concrete pavements. Initial findings have indicated that stainless steel and fiber composite materials possess properties, such as flexural strength and corrosion resistance, that are equivalent to the Department of Transportation specifications for standard steel, 1 1/2 inch diameter dowel bars. Several factors affect the load transfer of dowels; these include diameter, alignment, grouting, bonding, spacing, corrosion resistance, joint spacing, slab thickness and dowel embedment length. This research is directed at the analysis of load transfer based on material type and dowel spacing. Specifically, this research is directed at analyzing the load transfer characteristics of: (a) 8-inch verses 12-inch spacing, and (b) alternative dowel material compared to epoxy coated steel dowels, will also be analyzed. This report documents the installation of the test sections, placed in 1997. Dowel material type and location are identified. Construction observations and limitations with each dowel material are shown.
Resumo:
PURPOSE: To improve the traditional Nyquist ghost correction approach in echo planar imaging (EPI) at high fields, via schemes based on the reversal of the EPI readout gradient polarity for every other volume throughout a functional magnetic resonance imaging (fMRI) acquisition train. MATERIALS AND METHODS: An EPI sequence in which the readout gradient was inverted every other volume was implemented on two ultrahigh-field systems. Phantom images and fMRI data were acquired to evaluate ghost intensities and the presence of false-positive blood oxygenation level-dependent (BOLD) signal with and without ghost correction. Three different algorithms for ghost correction of alternating readout EPI were compared. RESULTS: Irrespective of the chosen processing approach, ghosting was significantly reduced (up to 70% lower intensity) in both rat brain images acquired on a 9.4T animal scanner and human brain images acquired at 7T, resulting in a reduction of sources of false-positive activation in fMRI data. CONCLUSION: It is concluded that at high B(0) fields, substantial gains in Nyquist ghost correction of echo planar time series are possible by alternating the readout gradient every other volume.
Resumo:
PURPOSE: Pharmacologic modulation of wound healing after glaucoma filtering surgery remains a major clinical challenge in ophthalmology. Poly(ortho ester) (POE) is a bioerodible and biocompatible viscous polymer potentially useful as a sustained drug delivery system that allows the frequency of intraocular injections to be reduced. The purpose of this study was to determine the efficacy of POE containing a precise amount of 5-fluorouracil (5-FU) in an experimental model of filtering surgery in the rabbit. METHODS: Trabeculectomy was performed in pigmented rabbit eyes. An ointmentlike formulation of POE containing 1% wt/wt 5-FU was injected subconjunctivally at the site of surgery, during the procedure. Intraocular pressure (IOP), bleb persistence, and ocular inflammatory reaction were monitored until postoperative day 30. Quantitative analysis of 5-FU was performed in the anterior chamber. Histologic analysis was used to assess the appearance of the filtering fistula and the polymer's biocompatibility. RESULTS: The decrease in IOP from baseline and the persistence of the filtering bleb were significantly more marked in the 5-FU-treated eyes during postoperative days 9 through 28. Corneal toxicity triggered by 5-FU was significantly lower in the group that received 5-FU in POE compared with a 5-FU tamponade. Histopathologic evaluation showed that POE was well tolerated, and no fibrosis occurred in eyes treated with POE containing 5-FU. CONCLUSIONS: In this rabbit model of trabeculectomy, the formulation based on POE and containing a precise amount of 5-FU reduced IOP and prolonged bleb persistence in a way similar to the conventional method of a 5-FU tamponade, while significantly reducing 5-FU toxicity.
Resumo:
The coefficients of relative strength (CORS) of base courses for use in the American association state highway officials (AASHO) interim guide for the design of flexible pavements are determined here. Based on (1) volumetric strain--axial strain relationships at minimum volume, and (2) effective stress ratio-cohesion relationships at maximum effective stress ratio, CORS were determined from the results of laboratory triaxial tests on both asphalt-treated and untreated aggregate base course materials. The researchers conclude that volumetric strain-axial strain at minimum volume appear to be appropriate parameters for determining CORS.
Resumo:
Magnetization versus temperature in the temperature interval 2-200 K was measured for amorphous alloys of three different compositions: Fe 81.5B14.5Si4, Fe40Ni38 Mo4B18, and Co70Fe5Ni 2Mo3B5Si15. The measurements were performed by means of a SQUID (superconducting quantum interference device) magnetometer. The aim was to extract information about the different mechanisms contributing to thermal demagnetization. A powerful data analysis technique based on successive minimization procedures has demonstrated that Stoner excitations of the strong ferromagnetic type play a significant role in the Fe-Ni alloy studied. The Fe-rich and Co-rich alloys do not show a measurable contribution from single-particle excitations.
Resumo:
Open source is typically outside of normal commercial software procurement processes.The Challenges.Increasingly diverse and distributed set of development resources.Little/no visibility into the origins of the software.Supply Chain Comparison: Hardware vs Software.Open source has revolutionized the mobile and device landscape, other industries will follow.Supply chain management techniques from hardware are useful for managing software.SPDX A standard format for communicating a software Bill of Materials across the supply chain.Effective management and control requires training, tools, processes and standards.
Resumo:
Postprint (published version)
Resumo:
The objective of this work was to characterize and quantify the genetic, molecular, and agronomic variability of hull-less barley genotypes, for the selection of parents and identification of genotypes adapted to the irrigated production system in the Brazilian Cerrado. Eighteen hull-less barley accessions were evaluated, and three covered barley accessions served as reference. The characterization was based on 157 RAPD molecular markers and ten agronomic traits. Genetic distance matrices were obtained based on molecular markers and quantitative traits. Graphic grouping and dispersion analyses were performed. Genetic, molecular, and agronomic variability was high among genotypes. Ethiopian accessions were genetically more similar, and the Brazilian ones were genetically more distant. For agronomic traits, two more consistent groupings were obtained, one with the most two-rowed materials, and the other with six-rowed materials. The more diverging materials were the two-rowed CI 13453, CN Cerrado 5, CN Cerrado 1, and CN Cerrado 2. The PI 356466, CN Cerrado 1, PI 370799, and CI 13453 genotypes show agronomic traits of interest and, as genetically different genotypes, they are indicated for crossing, in breeding programs.
Resumo:
Diplomityön tarkoituksena oli parantaa Stora Enso Sachsenin siistausprosessissa tuotetun uusiomassan vaaleuden kehitystä ja tutkia siihen vaikuttavia tekijöitä. Työn kirjallisessa osassa käsiteltiin uusiomassan kuidutusta ja vaahdotussiistausprosessia, sekä keräyspaperin ominaisuuksia ja käyttöä paperiteollisuuden raaka-aineena. Kokeellisessa osassa keskityttiin modifioidun natriumsilikaatin annostuksenoptimointiin ja vaikutuksiin laboratorio- ja prosessioloissa, sekä kesäefektin vaikutuksen tutkimiseen kuidutuksessa ja flotaation eri vaiheissa. Natriumsilikaatin laboratoriotutkimuksessa havaittiin, että korkein vaaleus suhteellisesti pienimmällä laboratorioflotaation häviöllä saavutettiin korkeimmalla tutkitulla natriumsilikaatin annostuksella, joka oli 1,1 %. Korkea natriumsilikaattiannostus yhdistettyinä korkeisiin vetyperoksidiannostukseen, 0,5 %, sekä korkeaan kokonaisalkaliteettiin, 0.33 %, johti korkeimpaan massan vaaleuteen ja pienimpiin häviöihin. Laboratoriotutkimuksen pohjalta modifioidulla natriumsilikaatilla suoritettiin koeajoja prosessissa. Noin 1 % natriumsilikaatin annostuksella havaittiin parempi pH:n bufferointikyky, pienempi kalsiumkarbonaatin määrä flotaation primäärivaiheissa, sekä lievästi parempi massan vaaleus verrattuna prosessissa aiemmin käytettyyn standardinatriumsilikaattiin. Kesäefektitutkimuksessa havaittiin, että kesäefektillä on suurin vaikutus esiflotaation primäärivaiheeseen, sillä primäärivaiheessa kuitujen osuus on huomattavasti suurempi kuin sekundäärivaiheissa. Esiflotaation primäärivaiheen uusiomassojen laboratorioflotaatioiden avulla saavutettujen maksimivaaleuksien ero kesän ja talven välillä oli noin 1,5 %ISO. Kesäefektin ei havaittu suuresti vaikuttavan flotaation sekundäärivaiheisiin.
Resumo:
Tehokkain tapavalkaista mekaanisesti kuidutettua puumassaa on suorittaa se hapettavasti peroksidikemikaalilla vahvasti alkalisissa oloissa. Perinteisesti alkalisuus on aikaansaatu natriumhydroksidin ja -silikaatin avulla. Se kuitenkin liuottaa massasta merkittävästi ligniiniä, mikä huonontaa saantoa ja suurentaa valkaisun jätevesien orgaanisen hiilen määrää sekä kemiallista hapenkulutusta. Yhä kovenevien vaaleustavoitteiden ja tiukentuneen vedenkäytön seurauksena on syntynyt tarve etsiä parempia valkaisun alkaleja. Kirjallisuuden pohjalta valittiinkokeellisesti tutkittaviksi alkaleiksi magnesiumhydroksidi, magnesiumoksidi, kalsiumhydroksidi sekä kalsiumoksidi. Niiden toimivuutta hapettavan vetyperoksidivalkaisun alkaleina tutkittiin valkaisukokein natriumsilikaattilisäyksen kanssa sekä ilman. Näistä parhaiten toimivaksi osoittautui Mg(OH)2. Sen avulla suoritettiin jatkoksi laboratoriokoevalkaisuja korkeassa sakeudessa. Keski- ja korkeasakeusvalkaisukokeiden tulosten mukaan käytettäessä Mg(OH)2 -alkalia natriumydroksidin ja -silikaatin asemesta jää massan loppuvaaleus noin yhden ISO-prosentin verran heikommaksi. Tällöin valkaisusuodoksessa oli vain varsin vähäinen määrä massasta liuennutta orgaanista hiiliainesta, noin 45 % siitä, mitä natriumin yhdisteiden käyttö vertailukokeessa tuotti. Tulosta varmennettiin suorittamalla korkea-sakeusvalkaisukokeita hiokemassatehtaan olosuhteissa, massoilla ja kiertovesillä.Myös tehdaskokeiden mukaan valkaistun massan loppuvaaleus jää noin yhden ISO-prosentin alhaisemmaksi, mutta valkaisusuodoksen orgaanisen hiilen määrä (TOC) jääalle puoleen Na-kemikaalein suoritetusta vertailukokeesta.
Resumo:
We present a viscometric affinity biosensor that can potentially allow continuous multi-analyte monitoring in biological fluids like blood or plasma. The sensing principle is based on the detection of viscosity changes of a polymeric solution which has a selective affinity for the analyte of interest. The chemico-mechanical sensor incorporates an actuating piezoelectric diaphragm, a sensing piezoelectric diaphragm and a flow-resisting microchannel for viscosity detection. A free-standing Anodic Alumina Oxide (AAO) porous nano-membrane is used as selective interface. A glucose-sensitive sensor was fabricated and extensively assessed in buffer solution. The sensor reversibility, stability and sensitivity were excellent during at least 65 hours. Results showed also a good degree of stability for a long term measurement (25 days). The sensor behaviour was furthermore tested in fetal bovine serum (FBS). The obtained results for glucose sensing are very promising, indicating that the developed sensor is a candidate for continuous monitoring in biological fluids. Sensitive solutions for ionized calcium and pH are currently under development and should allow multi-analyte sensing in the near future.