967 resultados para Bacterial Rna-polymerase
Resumo:
Background: In the presence of dNTPs, intact HIV-1 virions are capable of reverse transcribing at least part of their genome, a process known as natural endogenous reverse transcription (NERT). PCR analysis of virion DNA produced by NERT revealed that the first strand transfer reaction (1stST) was inefficient in intact virions, with minus strand (-) strong stop DNA (ssDNA) copy numbers up to 200 times higher than post-1stST products measured using primers in U3 and U5. This was in marked contrast to the efficiency of 1stST observed in single-round cell infection assays, in which (-) ssDNA and U3-U5 copy numbers were indistinguishable. Objectives: To investigate the reasons for the discrepancy in first strand transfer efficiency between intact cell-free virus and the infection process. Study design: Alterations of both NERT reactions and the conditions of cell infection were used to test whether uncoating and/or entry play a role in the discrepancy in first strand transfer efficiency. Results and Conclusions: The difference in 1stST efficiency could not be attributed simply to viral uncoating, since addition of very low concentrations of detergent to NERT reactions removed the viral envelope without disrupting the reverse transcription complex, and these conditions resulted in no improvement in 1stST efficiency. Virus pseudotyped with surface glycoproteins from either vesicular stomatitis virus or amphotrophic murine leukaemia virus also showed low levels of 1stST in low detergent NERT assays and equivalent levels of (-) ssDNA and 1stST in single-round infections of cells, demonstrating that the gp120-mediated infection process did not select for virions capable of carrying out 1stST. These data indicate that a post-entry event or factor may be involved in efficient HIV-1 reverse transcription in vivo. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A plasmid DNA directing transcription of the infectious full-length RNA genome of Kunjin (KUN) virus in vivo from a mammalian expression promoter was used to vaccinate mice intramuscularly. The KUN viral cDNA encoded in the plasmid contained the mutation in the NS1 protein (Pro-250 to Leu) previously shown to attenuate KUN virus in weanling mice. KUN virus was isolated from the blood of immunized mice 3-4 days after DNA inoculation, demonstrating that infectious RNA was being transcribed in vivo; however, no symptoms of virus-induced disease were observed. By 19 days postimmunization, neutralizing antibody was detected in the serum of immunized animals. On challenge with lethal doses of the virulent New York strain of West Nile (WN) or wild-type KUN virus intracerebrally or intraperitoneally, mice immunized with as little as 0.1-1 mug of KUN plasmid DNA were solidly protected against disease. This finding correlated with neutralization data in vitro showing that serum from KUN DNA-immunized mice neutralized KUN and WN,viruses with similar efficiencies. The results demonstrate that delivery of an attenuated but replicating KUN virus via a plasmid DNA vector may provide an effective vaccination strategy against virulent strains of WN virus.
Resumo:
Objective To develop and validate specific, sensitive and rapid diagnostic tests using RT-PCR for the detection of Ross River virus (RRV), Kunjin virus (KV) and Murray Valley encephalitis virus (MVEV) infections in horses. Methods Primer sets based on nucleotide sequence encoding the envelope glycoprotein E2 of RRV and on the nonstructural protein 5 (NS5) of KV and MVEV were designed and used in single round PCRs to test for the respective viruses in infected cell cultures and, in the case of RRV, in samples of horse blood and synovial fluid. Results The primer pairs designed for each of the three viruses amplified a product of expected size from prototype viruses that were grown in cell culture. The identity of each of the products was confirmed by nucleotide sequencing indicating that in the context used the RT-PCRs were specific. RRV was detected in serums from 8 horses for which there were clinical signs consistent with RRV infection such that an acute-phase serum sample was taken and submitted for RRV serology testing. The RRV RT-PCR was analytically sensitive in that it was estimated to detect as little as 50 TCID50 of RRV per mL of serum and was specific in that the primer pairs did not amplify other products from the 8 serum samples. The RRV primers also detected virus in three independent mosquito pools known to contain RRV by virus isolation in cell culture. Samples from horses suspected to be infected with KV and MVEV were not available. Conclusion Despite much anecdotal and serological evidence for infection of horses with RRV actual infection and associated clinical disease are infrequently confirmed. The availability of a specific and analytically sensitive RT-PCR for the detection of RRV provides additional opportunities to confirm the presence of this virus in clinical samples. The RTPCR primers for the diagnosis of KV and MVEV infections were shown to be specific for cell culture grown viruses but the further validation of these tests requires the availability of appropriate clinical samples from infected horses.
Resumo:
Incursions of Japanese encephalitis (JE) virus into northern Queensland are currently monitored using sentinel pigs. However, the maintenance of these pigs is expensive, and because pigs are the major amplifying hosts of the virus, they may contribute to JE transmission. Therefore, we evaluated a mosquito-based detection system to potentially replace the sentinel pigs. Single, inactivated JE-infected Culex annulirostris Skuse and C. sitiens Wiedemann were placed into pools of uninfected mosquitoes that were housed in a Mosquito Magnet Pro (MM) trap set under wet season field conditions in Cairns, Queensland for 0, 7, or 14 d. JE viral RNA was detected (cycling threshold [CT] = 40) in 11/ 12, 10/14, and 2/5 pools containing 200, 1,000, and 5,000 mosquitoes, respectively, using a TaqMan real-time reverse transcription-polymerase chain reaction (RT-PCR). The ability to detect virus was not affected by the length of time pools were maintained under field conditions, although the CT score tended to increase with field exposure time. Furthermore, JE viral RNA was detected in three pools of 1,000 mosquitoes collected from Badu Island using a MM trap. These results indicated that a mosquito trap system employing self-powered traps, such as the MosquitoMagnet, and a real-time PCR system, could be used to monitor for JE in remote areas.
Resumo:
We isolated bacteria from ticks, lice and fleas. Partial small subunit rRNA sequences were obtained for each isolate and the closest matches in the FastA database were determined. These bacteria were mostly Gram-positive (Firmicutes), although representatives from the Proteobacteria (alpha, beta, gamma subdivisions) and CFB group were also isolated. Most of the isolates we found were from genera that were present in most of the ectoparasites studied, but a few genera were restricted to one species of ectoparasite. The most commonly isolated genera were Stenotrophomonas, Staphylococcus, Pseudomonas, Acinetobacter and Bacillus. Species of Bacillus and Proteus, which have biopesticide potential, were found in some of these ectoparasites. Overall, the communities of bacteria were similar to those found in other studies of parasitic arthropods.
Resumo:
Sulfite dehydrogenase from Starkeya novella is an alphabeta heterodimer comprising a 40.6 kDa subunit (containing the Mo cofactor) and a smaller 8.8 kDa heme c subunit. The enzyme catalyses the oxidation of sulfite to sulfate with the natural electron acceptor being cytochrome c(550). Its catalytic mechanism is thought to resemble that found in eukaryotic sulfite oxiclases. Using protein film voltammetry and redox potentiometry, we have identified both Mo- and heme-centered redox responses from the enzyme immobilized on a pyrolytic graphite working electrode: E-m,E-8 (Fe-III/II) +177 mV; E-m,E-8 (Mo-VI/V) +211 mV and E(m,)8 (Mo-V/IV) -118 mV vs NHE; Upon addition of sulfite to the electrochemical cell a steady-state voltammogram is observed and an apparent Michaelis constant (K-m) of 26(l) muM was determined for the enzyme immobilized on the working electrode surface, which is comparable with the value obtained from solution assays.
Resumo:
Sulfite dehydrogenase (SDH) from Starkeya novella, a sulfite-oxidizing molybdenum-containing enzyme, has a novel tightly bound αβ-heterodimeric structure in which the Mo cofactor and the c-type heme are located on different subunits. Flash photolysis studies of intramolecular electron transfer (IET) in SDH show that the process is first-order, independent of solution viscosity, and not inhibited by sulfate, which strongly indicates that IET in SDH proceeds directly through the protein medium and does not involve substantial movement of the two subunits relative to each other. The IET results for SDH contrast with those for chicken and human sulfite oxidase (SO) in which the molybdenum domain is linked to a b-type heme domain through a flexible loop, and IET shows a remarkable dependence on sulfate concentration and viscosity that has been ascribed to interdomain docking. The results for SDH provide additional support for the interdomain docking hypothesis in animal SO and clearly demonstrate that dependence of IET on viscosity and sulfate is not an inherent property of all sulfite-oxidizing molybdenum enzymes.
Resumo:
OBJECTIVE: To document the incidence and the descriptive epidemiology of bacterial meningitis among individuals under age 20 in a geographically defined region in Brazil during the two-year period immediately preceding the introduction of Haemophilus influenzae type b (Hib) vaccines into the national immunization program of Brazil. METHODS: Population-based epidemiological study of all cases of bacterial meningitis reported among residents of Campinas, Brazil, under age 20 (n=316,570) during the period of 1997-98, using comprehensive surveillance records compiled by the Campinas Health Department from cases reported among hospital inpatients, outpatients, emergency room visits, death certificates, and autopsy reports. RESULTS: The incidence of bacterial meningitis (n=274) was 334.9, 115 and 43.5 cases/10(5) person-years (pys) for residents of Campinas under age 1, 5 and 20, respectively. All cases were hospitalized, with an average length of stay of 12 days. Documented prior antibiotic use was 4.0%. The case-fatality rate of bacterial meningitis in individuals under age 20 was 9% (24/274) with 75% of deaths occurring in children under the age of five. The incidence of Hib meningitis (n=26) was 62.8 and 17 cases/10(5) pys in children age <1 and <5, respectively. CONCLUSIONS: The incidence of Hib meningitis in children under the age of 5 in Campinas during 1997-98 was similar to that reported in the US, Western Europe, and Israel prior to widespread Hib vaccine use in those regions. This study provides a baseline for later studies to evaluate changes in the etiology and incidence of bacterial meningitis in children after introduction of routine Hib vaccination in Brazil.
Resumo:
Abstract - Recently, long noncoding RNAs have emerged as pivotal molecules for the regulation of coding genes' expression. These molecules might result from antisense transcription of functional genes originating natural antisense transcripts (NATs) or from transcriptional active pseudogenes. TBCA interacts with β-tubulin and is involved in the folding and dimerization of new tubulin heterodimers, the building blocks of microtubules. Methodology/Principal findings: We found that the mouse genome contains two structurally distinct Tbca genes located in chromosomes 13 (Tbca13) and 16 (Tbca16). Interestingly, the two Tbca genes albeit ubiquitously expressed, present differential expression during mouse testis maturation. In fact, as testis maturation progresses Tbca13 mRNA levels increase progressively, while Tbca16 mRNA levels decrease. This suggests a regulatory mechanism between the two genes and prompted us to investigate the presence of the two proteins. However, using tandem mass spectrometry we were unable to identify the TBCA16 protein in testis extracts even in those corresponding to the maturation step with the highest levels of Tbca16 transcripts. These puzzling results led us to re-analyze the expression of Tbca16. We then detected that Tbca16 transcription produces sense and natural antisense transcripts. Strikingly, the specific depletion by RNAi of these transcripts leads to an increase of Tbca13 transcript levels in a mouse spermatocyte cell line. Conclusions/Significance: Our results demonstrate that Tbca13 mRNA levels are post-transcriptionally regulated by the sense and natural antisense Tbca16 mRNA levels. We propose that this regulatory mechanism operates during spermatogenesis, a process that involves microtubule rearrangements, the assembly of specific microtubule structures and requires critical TBCA levels.
Resumo:
The conjugation of antigens with ligands of pattern recognition receptors (PRR) is emerging as a promising strategy for the modulation of specific immunity. Here, we describe a new Escherichia coli system for the cloning and expression of heterologous antigens in fusion with the OprI lipoprotein, a TLR ligand from the Pseudomonas aeruginosa outer membrane (OM). Analysis of the OprI expressed by this system reveals a triacylated lipid moiety mainly composed by palmitic acid residues. By offering a tight regulation of expression and allowing for antigen purification by metal affinity chromatography, the new system circumvents the major drawbacks of former versions. In addition, the anchoring of OprI to the OM of the host cell is further explored for the production of novel recombinant bacterial cell wall-derived formulations (OM fragments and OM vesicles) with distinct potential for PRR activation. As an example, the African swine fever virus ORF A104R was cloned and the recombinant antigen was obtained in the three formulations. Overall, our results validate a new system suitable for the production of immunogenic formulations that can be used for the development of experimental vaccines and for studies on the modulation of acquired immunity.
Resumo:
The solubility of ethene in water and in the fermentation medium of Xanthobacter Py(2) was determined with a Ben-Naim-Baer type apparatus. The solubility measurements were carried out in the temperature range of (293.15 to 323.15) K and at atmospheric pressure with a precision of about +/- 0.3 %. The Ostwald coefficients, the mole fractions of the dissolved ethene, at the gas partial pressure of 101.325 kPa, and the Henry coefficients, at the water vapor pressure, were calculated using accurate thermodynamic relations. A comparison between the solubility of ethene in water and in the cultivation medium has shown that this gas is about 2.4 % more soluble in pure water. On the other hand, from the solubility temperature dependence, the Gibbs energy, enthalpy, and entropy changes for the process of transferring the solute from the gaseous phase to the liquid solutions were also determined. Moreover, the perturbed-chain statistical associating fluid theory equation of state (PC-SAFT EOS) model was used for the prediction of the solubility of ethene in water. New parameters, k(ij), are proposed for this system, and it was found that using a ky temperature-dependent PC-SAFT EOS describes more accurately the behavior solubilities of ethene in water at 101.325 kPa, improving the deviations to 1 %.
Resumo:
N,N-dimethyl-4-((phenylamino)methyl)aniline (1) was prepared by condensation of aniline and 4-(dimethylamino)benzaldehyde [1] N,N-dimethyl-4-(2,2,2-trichloro-1-(phenylamino)ethyl)aniline (2) was synthesized by trichloromethylation of the imine (N,N-dimethyl-4-((phenylimino)methyl)aniline (1)) with trichloroacetic anhydride under microwave irradiation [2] (Sheme 1). The present work reports the study of bacterial and yeast activity for the compound 2. The bacteria used in this study are Staphylococcus aureus, Escherichia coli and the yeast are Saccharomyces Cerevisiae Candida albican.The results that we will present are the determination of minimal inhibitory concentration (MIC), by means of microdilution by plate method and the specific growth constants for this microorganism. Further studies are being performed to determine viability and cellular injury with this drug.
Resumo:
In recent years Ionic Liquids (ILs) are being applied in life sciences. ILs are being produce with active pharmaceutical drugs (API) as they can reduce polymorphism and drug solubility problems [1] Also ILs are being applied as a drug delivery device in innovative therapies What is appealing in ILs is the ILs building up platform, the counter-ion can be carefully chosen in order to avoid undesirable side effects or to give innovative therapies in which two active ions are paired. This work shows ILs based on ampicillin (an anti-bacterial agent) and ILs based on Amphotericin B. Also we show studies that indicate that ILs based on Ampicillin could reverse resistance in some bacteria. The ILs produced in this work were synthetized by the neutralization method described in Ferraz et. al. [2] Ampicillin anion was combined with the following organic cations 1-ethyl-3-methylimidazolium, [EMIM]; 1-hydroxy-ethyl-3-methylimidazolium, [C2OHMIM]; choline, [cholin]; tetraethylammonium, [TEA]; cetylpyridinium, [C16pyr] and trihexyltetradecylphosphonium, [P6,6,6,14]. Amphotericin B was combined with [C16pyr], [cholin] and 1-metohyethyl-3-methylimidazolium, [C3OMIM]. The ILs-APIs based on ampicillin[2] were tested against sensitive Gram-negative bacteria Escherichia coli ATCC 25922 and Klebsiella pneumonia (clinical isolated), as well as on Gram positive Staphylococcus Aureus ATCC 25923, Staphylococcus epidermidis and Enterococcus faecalis. The arising resistance developed by bacteria to antibiotics is a serious public health threat and needs new and urgent measures. We study the bacterial activity of these compounds against a panel of resistant bacteria (clinical isolated strains): E. coli CTX M9, E. coli TEM CTX M9, E. coli TEM1, E. coli CTX M2, E. coli AmpC Mox2. In this work we demonstrate that is possible to produce ILs from anti-bacterial and anti-fungal compounds. We show here that the new ILs can reverse the bacteria resistance. With the careful choice of the organic cation, it is possible to create important biological and physic-chemical properties. This work also shows that the ion-pair is fundamental in ampicillin mechanism of action.
Resumo:
Background: There are now several lines of evidence to suggest that protein synthesis and translation factors are involved in the regulation of cell proliferation and cancer development. Aims: To investigate gene expression patterns of eukaryotic releasing factor 3 (eRF3) in gastric cancer. Methods: RNA was prepared from 25 gastric tumour biopsies and adjacent non-neoplastic mucosa. Real time TaqMan reverse transcription polymerase chain reaction (RT-PCR) was performed to measure the relative gene expression levels. DNA was isolated from tumour and normal tissues and gene dosage was determined by a quantitative real time PCR using SYBR Green dye. Results: Different histological types of gastric tumours were analysed and nine of the 25 tumours revealed eRF3/GSPT1 overexpression; moreover, eight of the 12 intestinal type carcinomas analysed overexpressed the gene, whereas eRF3/GSPT1 was overexpressed in only one of the 10 diffuse type carcinomas (Kruskal-Wallis Test; p , 0.05). No correlation was found between ploidy and transcript expression levels of eRF3/GSPT1. Overexpression of eRF3/GSPT1 was not associated with increased translation rates because the upregulation of eRF3/GSPT1 did not correlate with increased eRF1 levels. Conclusions: Overexpression of eRF3/GSPT1 in intestinal type gastric tumours may lead to an increase in the translation efficiency of specific oncogenic transcripts. Alternatively, eRF3/GSPT1 may be involved in tumorigenesis as a result of its non-translational roles, namely (dis)regulating the cell cycle, apoptosis, or transcription.
Resumo:
The general transcription factor TFIIB, encoded by SUA7 in Saccharomyces cerevisiae, is required for transcription activation but apparently of a specific subset of genes, for example, linked with mitochondrial activity and hence with oxidative environments. Therefore, studying SUA7/TFIIB as a potential target of oxidative stress is fundamental. We found that controlled SUA7 expression under oxidative conditions occurs at transcriptional and mRNA stability levels. Both regulatory events are associated with the transcription activator Yap1 in distinct ways: Yap1 affects SUA7 transcription up regulation in exponentially growing cells facing oxidative signals; the absence of this activator per se contributes to increase SUA7 mRNA stability. However, unlike SUA7 mRNA, TFIIB abundance is not altered on oxidative signals. The biological impact of this preferential regulation of SUA7 mRNA pool is revealed by the partial suppression of cellular oxidative sensitivity by SUA7 overexpression, and supported by the insights on the existence of a novel RNA-binding factor, acting as an oxidative sensor, which regulates mRNA stability. Taken together the results point out a primarily cellular commitment to guarantee SUA7 mRNA levels under oxidative environments.