921 resultados para sulfur chemistry
Resumo:
In this thesis I described the theory and application of several computational methods in solving medicinal chemistry and biophysical tasks. I pointed out to the valuable information which could be achieved by means of computer simulations and to the possibility to predict the outcome of traditional experiments. Nowadays, computer represents an invaluable tool for chemists. In particular, the main topics of my research consisted in the development of an automated docking protocol for the voltage-gated hERG potassium channel blockers, and the investigation of the catalytic mechanism of the human peptidyl-prolyl cis-trans isomerase Pin1.
Resumo:
Topic of this thesis is the development of experiments behind the gas-filled separator TASCA(TransActinide Separator and Chemistry Apparatus) to study the chemical properties of the transactinide elements.rnIn the first part of the thesis, the electrodepositions of short-lived isotopes of ruthenium and osmium on gold electrodes were studied as model experiments for hassium. From literature it is known that the deposition potential of single atoms differs significantly from the potential predicted by the Nernst equation. This shift of the potential depends on the adsorption enthalpy of therndeposited element on the electrode material. If the adsorption on the electrode-material is favoured over the adsorption on a surface made of the same element as the deposited atom, the electrode potential is shifted to higher potentials. This phenomenon is called underpotential deposition.rnPossibilities to automatize an electro chemistry experiment behind the gas-filled separator were explored for later studies with transactinide elements.rnThe second part of this thesis is about the in-situ synthesis of transition-metal-carbonyl complexes with nuclear reaction products. Fission products of uranium-235 and californium-249 were produced at the TRIGA Mainz reactor and thermalized in a carbon-monoxide containing atmosphere. The formed volatile metal-carbonyl complexes could be transported in a gas-stream.rnFurthermore, short-lived isotopes of tungsten, rhenium, osmium, and iridium were synthesised at the linear accelerator UNILAC at GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt. The recoiling fusion products were separated from the primary beam and the transfer products in the gas-filled separator TASCA. The fusion products were stopped in the focal plane of TASCA in a recoil transfer chamber. This chamber contained a carbon-monoxide – helium gas mixture. The formed metal-carbonyl complexes could be transported in a gas stream to various experimental setups. All synthesised carbonyl complexes were identified by nuclear decay spectroscopy. Some complexes were studied with isothermal chromatography or thermochromatography methods. The chromatograms were compared with Monte Carlo Simulations to determine the adsorption enthalpyrnon silicon dioxide and on gold. These simulations based on existing codes, that were modified for the different geometries of the chromatography channels. All observed adsorption enthalpies (on silcon oxide as well as on gold) are typical for physisorption. Additionally, the thermalstability of some of the carbonyl complexes was studied. This showed that at temperatures above 200 °C therncomplexes start to decompose.rnIt was demonstrated that carbonyl-complex chemistry is a suitable method to study rutherfordium, dubnium, seaborgium, bohrium, hassium, and meitnerium. Until now, only very simple, thermally stable compounds have been synthesized in the gas-phase chemistry of the transactindes. With the synthesis of transactinide-carbonyl complexes a new compound class would be discovered. Transactinide chemistry would reach the border between inorganic and metallorganic chemistry.rnFurthermore, the in-situ synthesised carbonyl complexes would allow nuclear spectroscopy studies under low background conditions making use of chemically prepared samples.
Resumo:
Die vorliegende Arbeit befasst sich mit der Synthese von nanostrukturierten Antimoniden, wobei die folgenden beiden Themen bearbeitet wurden: rnAus chemischer Sicht wurden neue Synthesewege entwickelt, um Nanopartikel der Verbindungen in den binären Systemen Zn-Sb und Fe-Sb herzustellen (Zn4Sb3, ZnSb, FeSb2, Fe1+xSb). Anders als in konventionellen Festkörperreaktionen, die auf die Synthese von Bulk-Materialien oder Einkristallen zielen, muss die Synthese von Nanopartikeln Agglomerate und Ostwald-Wachstum vermeiden. Daher benötigen annehmbare Reaktionszeiten und vergleichsweise tiefe Reaktionstemperaturen kurze Diffusionswege und tiefe Aktivierungsbarrieren. Demzufolge bedient sich die Synthese der Reaktion von Antimon-Nanopartikeln und geeigneten molekularen oder nanopartikulären Edukten der entsprechenden Übergangsmetalle. Zusätzlich wurden anisotrope ZnSb Strukturen synthetisiert, indem eine Templat-Synthese mit Hilfe von anodisierten Aluminiumoxid- oder Polycarbonat-Membranen angewandt wurde. rnDie erhaltenen Produkte wurden hauptsächlich durch Röntgen-Diffraktion und Elektronenmikroskopie untersucht. Die Auswertung der Pulver Röntgendiffraktions-Daten stellte eine Herausforderung dar, da die Nanostrukturierung und die Anwesenheit von mehreren Phasen zu verbreiterten und überlagernden Reflexen führen. Zusätzliche Fe-Mößbauer Messungen wurden im Falle der Fe-Sb Produkte vorgenommen, um detailliertere Informationen über die genaue Zusammensetzung zu erhalten. Die erstmals hergestellte Phase Zn1+xSb wurde einer detaillierten Kristallstrukturanalyse unterzogen, die mit Hilfe einer neuen Diffraktionsmethode, der automatisierten Elektronen Diffraktions Tomographie, durchgeführt wurde.rnrnAus physikalischer Sicht sind Zn4Sb3, ZnSb und FeSb2 interessante thermoelektrische Materialien, die aufgrund ihrer Fähigkeit thermische in elektrische Energie umzuwandeln, großes Interesse geweckt haben. Nanostrukturierte thermoelektrische Materialien zeigen dabei eine höhere Umwandlungseffizienz zu erhöhen, da deren thermische Leitfähigkeit herabgesetzt ist. Da thermoelektrische Bauteile aus dichten Bulk-Materialien gefertigt werden, spielte die Verfestigung der synthetisierten nanopartikulären Pulver eine große Rolle. Die als „Spark Plasma Sintering“ bezeichnete Methode wurde eingesetzt, um die Proben zu pressen. Dies ermöglicht schnelles Heizen und Abkühlen der Probe und kann so das bei klassischen Heißpress-Methoden unvermeidliche Kristallitwachstum verringern. Die optimalen Bedingungen für das Spark Plasma Sintern zu finden, ist Inhalt von bestehender und weiterführender Forschung. rnEin Problem stellt die Stabilität der Proben während des Sinterns dar. Trotz des schnellen Pressens wurde eine teilweise Zersetzung im Falle des Zn1+xSb beobachtet, wie mit Hilfe von Synchrotrondiffraktionsuntersuchungen aufgedeckt wurde. Morphologie und Dichte der verschiedenen verfestigten Materialien wurden mittels Rasterelektronenmikroskopie und Lasermikroskopie bestimmt. Die Gitterdynamik wurde mit Hilfe von Wärmekapazitätsmessungen- und inelastischer Kern-Streuung untersucht. Die Wärmeleitfähigkeit der nanostrukturierten Materialien ist im Vergleich zu den Festkörpern ist drastisch reduziert - im Falle des FeSb2 um mehr als zwei Größenordnungen. Abhängig von der Zusammensetzung und mechanischen Härte wurden für einen Teil der verfestigten Nanomaterialien die thermoelektrische Eigenschaften, wie Seebeck Koeffizient, elektrische und Wärmeleitfähigkeit, gemessen.rn
Resumo:
Sulfate aerosol plays an important but uncertain role in cloud formation and radiative forcing of the climate, and is also important for acid deposition and human health. The oxidation of SO2 to sulfate is a key reaction in determining the impact of sulfate in the environment through its effect on aerosol size distribution and composition. This thesis presents a laboratory investigation of sulfur isotope fractionation during SO2 oxidation by the most important gas-phase and heterogeneous pathways occurring in the atmosphere. The fractionation factors are then used to examine the role of sulfate formation in cloud processing of aerosol particles during the HCCT campaign in Thuringia, central Germany. The fractionation factor for the oxidation of SO2 by ·OH radicals was measured by reacting SO2 gas, with a known initial isotopic composition, with ·OH radicals generated from the photolysis of water at -25, 0, 19 and 40°C (Chapter 2). The product sulfate and the residual SO2 were collected as BaSO4 and the sulfur isotopic compositions measured with the Cameca NanoSIMS 50. The measured fractionation factor for 34S/32S during gas phase oxidation is αOH = (1.0089 ± 0.0007) − ((4 ± 5) × 10−5 )T (°C). Fractionation during oxidation by major aqueous pathways was measured by bubbling the SO2 gas through a solution of H2 O2
Resumo:
It is well known that ageing and cancer have common origins due to internal and environmental stress and share some common hallmarks such as genomic instability, epigenetic alteration, aberrant telomeres, inflammation and immune injury. Moreover, ageing is involved in a number of events responsible for carcinogenesis and cancer development at the molecular, cellular, and tissue levels. Ageing could represent a “blockbuster” market because the target patient group includes potentially every person; at the same time, oncology has become the largest therapeutic area in the pharmaceutical industry in terms of the number of projects, clinical trials and research and development (R&D) spending, but cancer remains one of the leading causes of mortality worldwide. The overall aim of the work presented in this thesis was the rational design of new compounds able to modulate activity of relevant targets involved in cancer and aging-related pathologies, namely proteasome and immunoproteasome, sirtuins and interleukin 6. These three targets play different roles in human cells, but the modulation of its activity using small molecules could have beneficial effects on one or more aging-related diseases and cancer. We identified new moderately active and selective non-peptidic compounds able to inhibit the activity of both standard and immunoproteasome, as well as novel and selective scaffolds that would bind and inhibit SIRT6 selectively and can be used to sensitize tumor cells to commonly used anticancer agents such gemcitabine and olaparib. Moreover, our virtual screening approach led us also to the discovery of new putative modulators of SIRT3 with interesting in-vitro and cellular activity. Although the selectivity and potency of the identified chemical scaffolds are susceptible to be further improved, these compounds can be considered as highly promising leads for the development of future therapeutics.
Resumo:
This doctorate was funded by the Regione Emilia Romagna, within a Spinner PhD project coordinated by the University of Parma, and involving the universities of Bologna, Ferrara and Modena. The aim of the project was: - Production of polymorphs, solvates, hydrates and co-crystals of active pharmaceutical ingredients (APIs) and agrochemicals with green chemistry methods; - Optimization of molecular and crystalline forms of APIs and pesticides in relation to activity, bioavailability and patentability. In the last decades, a growing interest in the solid-state properties of drugs in addition to their solution chemistry has blossomed. The achievement of the desired and/or the more stable polymorph during the production process can be a challenge for the industry. The study of crystalline forms could be a valuable step to produce new polymorphs and/or co-crystals with better physical-chemical properties such as solubility, permeability, thermal stability, habit, bulk density, compressibility, friability, hygroscopicity and dissolution rate in order to have potential industrial applications. Selected APIs (active pharmaceutical ingredients) were studied and their relationship between crystal structure and properties investigated, both in the solid state and in solution. Polymorph screening and synthesis of solvates and molecular/ionic co-crystals were performed according to green chemistry principles. Part of this project was developed in collaboration with chemical/pharmaceutical companies such as BASF (Germany) and UCB (Belgium). We focused on on the optimization of conditions and parameters of crystallization processes (additives, concentration, temperature), and on the synthesis and characterization of ionic co-crystals. Moreover, during a four-months research period in the laboratories of Professor Nair Rodriguez-Hormedo (University of Michigan), the stability in aqueous solution at the equilibrium of ionic co-crystals (ICCs) of the API piracetam was investigated, to understand the relationship between their solid-state and solution properties, in view of future design of new crystalline drugs with predefined solid and solution properties.
Resumo:
Diese Dissertation demonstriert und verbessert die Vorhersagekraft der Coupled-Cluster-Theorie im Hinblick auf die hochgenaue Berechnung von Moleküleigenschaften. Die Demonstration erfolgt mittels Extrapolations- und Additivitätstechniken in der Single-Referenz-Coupled-Cluster-Theorie, mit deren Hilfe die Existenz und Struktur von bisher unbekannten Molekülen mit schweren Hauptgruppenelementen vorhergesagt wird. Vor allem am Beispiel von cyclischem SiS_2, einem dreiatomigen Molekül mit 16 Valenzelektronen, wird deutlich, dass die Vorhersagekraft der Theorie sich heutzutage auf Augenhöhe mit dem Experiment befindet: Theoretische Überlegungen initiierten eine experimentelle Suche nach diesem Molekül, was schließlich zu dessen Detektion und Charakterisierung mittels Rotationsspektroskopie führte. Die Vorhersagekraft der Coupled-Cluster-Theorie wird verbessert, indem eine Multireferenz-Coupled-Cluster-Methode für die Berechnung von Spin-Bahn-Aufspaltungen erster Ordnung in 2^Pi-Zuständen entwickelt wird. Der Fokus hierbei liegt auf Mukherjee's Variante der Multireferenz-Coupled-Cluster-Theorie, aber prinzipiell ist das vorgeschlagene Berechnungsschema auf alle Varianten anwendbar. Die erwünschte Genauigkeit beträgt 10 cm^-1. Sie wird mit der neuen Methode erreicht, wenn Ein- und Zweielektroneneffekte und bei schweren Elementen auch skalarrelativistische Effekte berücksichtigt werden. Die Methode eignet sich daher in Kombination mit Coupled-Cluster-basierten Extrapolations-und Additivitätsschemata dafür, hochgenaue thermochemische Daten zu berechnen.
Resumo:
This study aims at a comprehensive understanding of the effects of aerosol-cloud interactions and their effects on cloud properties and climate using the chemistry-climate model EMAC. In this study, CCN activation is regarded as the dominant driver in aerosol-cloud feedback loops in warm clouds. The CCN activation is calculated prognostically using two different cloud droplet nucleation parameterizations, the STN and HYB CDN schemes. Both CDN schemes account for size and chemistry effects on the droplet formation based on the same aerosol properties. The calculation of the solute effect (hygroscopicity) is the main difference between the CDN schemes. The kappa-method is for the first time incorporated into Abdul-Razzak and Ghan activation scheme (ARG) to calculate hygroscopicity and critical supersaturation of aerosols (HYB), and the performance of the modied scheme is compared with the osmotic coefficient model (STN), which is the standard in the ARG scheme. Reference simulations (REF) with the prescribed cloud droplet number concentration have also been carried out in order to understand the effects of aerosol-cloud feedbacks. In addition, since the calculated cloud coverage is an important determinant of cloud radiative effects and is influencing the nucleation process two cloud cover parameterizations (i.e., a relative humidity threshold; RH-CLC and a statistical cloud cover scheme; ST-CLC) have been examined together with the CDN schemes, and their effects on the simulated cloud properties and relevant climate parameters have been investigated. The distinct cloud droplet spectra show strong sensitivity to aerosol composition effects on cloud droplet formation in all particle sizes, especially for the Aitken mode. As Aitken particles are the major component of the total aerosol number concentration and CCN, and are most sensitive to aerosol chemical composition effect (solute effect) on droplet formation, the activation of Aitken particles strongly contribute to total cloud droplet formation and thereby providing different cloud droplet spectra. These different spectra influence cloud structure, cloud properties, and climate, and show regionally varying sensitivity to meteorological and geographical condition as well as the spatiotemporal aerosol properties (i.e., particle size, number, and composition). The changes responding to different CDN schemes are more pronounced at lower altitudes than higher altitudes. Among regions, the subarctic regions show the strongest changes, as the lower surface temperature amplifies the effects of the activated aerosols; in contrast, the Sahara desert, where is an extremely dry area, is less influenced by changes in CCN number concentration. The aerosol-cloud coupling effects have been examined by comparing the prognostic CDN simulations (STN, HYB) with the reference simulation (REF). Most pronounced effects are found in the cloud droplet number concentration, cloud water distribution, and cloud radiative effect. The aerosol-cloud coupling generally increases cloud droplet number concentration; this decreases the efficiency of the formation of weak stratiform precipitation, and increases the cloud water loading. These large-scale changes lead to larger cloud cover and longer cloud lifetime, and contribute to high optical thickness and strong cloud cooling effects. This cools the Earth's surface, increases atmospheric stability, and reduces convective activity. These changes corresponding to aerosol-cloud feedbacks are also differently simulated depending on the cloud cover scheme. The ST-CLC scheme is more sensitive to aerosol-cloud coupling, since this scheme uses a tighter linkage of local dynamics and cloud water distributions in cloud formation process than the RH-CLC scheme. For the calculated total cloud cover, the RH-CLC scheme simulates relatively similar pattern to observations than the ST-CLC scheme does, but the overall properties (e.g., total cloud cover, cloud water content) in the RH simulations are overestimated, particularly over ocean. This is mainly originated from the difference in simulated skewness in each scheme: the RH simulations calculate negatively skewed distributions of cloud cover and relevant cloud water, which is similar to that of the observations, while the ST simulations yield positively skewed distributions resulting in lower mean values than the RH-CLC scheme does. The underestimation of total cloud cover over ocean, particularly over the intertropical convergence zone (ITCZ) relates to systematic defficiency of the prognostic calculation of skewness in the current set-ups of the ST-CLC scheme.rnOverall, the current EMAC model set-ups perform better over continents for all combinations of the cloud droplet nucleation and cloud cover schemes. To consider aerosol-cloud feedbacks, the HYB scheme is a better method for predicting cloud and climate parameters for both cloud cover schemes than the STN scheme. The RH-CLC scheme offers a better simulation of total cloud cover and the relevant parameters with the HYB scheme and single-moment microphysics (REF) than the ST-CLC does, but is not very sensitive to aerosol-cloud interactions.
Resumo:
Die in der vorliegenden Dissertation entwickelten organochemischen Protokolle und Konzepte erweitern die Bottom-Up-Synthese von atompräzisen Nanographenstreifen (GNR) um zwei fundamentale Bereiche. Zum einen die Dotierung der halbleitenden GNR mit Schwefel oder Stickstoffatomen und zum anderen ein Protokoll für eine lösungsbasierte Synthese von stickstoffdotierten Zickzack-Streifen.rnDie Dotierung von GNR beinhaltet die Synthese von monomeren Bausteinen bei denen, im Gegensatz zu ihren reinen Kohlenstoffhomologen, definierte Positionen am Rand mit zwei oder vier Stickstoff- beziehungsweise zwei Schwefelatomen ersetzt wurden. Die Synthese atompräziser GNR konnte mit verschiedenen experimentellen Methoden analysiert und anschaulich über STM visualisiert werden. Neben einer n-Dotierung gelang so auch erstmals eine Bottom-Up-Synthese von schwefeldotierten GNR. Eine mögliche Anwendung in der Nanoelektronik aufbauend auf dotierten GNR wurde bestätigt, indem durch Co-Polymerisation von stickstoffhaltigen mit reinen Kohlenstoffmonomeren Heteroschnittstellen zwischen dotierten und undotierten Bereichen hergestellt werden konnten. Solche Heteroschnittstellen sind fundamentale Grundlage von Dioden und damit Basis einer Vielzahl elektronischer Elemente wie Solarzellen oder Leuchtdioden.rnWährend für halbleitende GNR mit einer Armlehnen-Form ein breites Spektrum an organischen Syntheseprotokollen zur Verfügung stand, existierte zu Beginn dieser Arbeit keines für GNR mit Zickzack-Struktur. Innerhalb dieser Arbeit konnte eine Bottom-Up-Synthese zur Erschließung stickstoffdotierter GNR mit Zickzack-Randstruktur erarbeitet werden. Durch die Verwendung eines (2-Hydroxymethyl)phenylboronsäureesters werden Hydroxymethylsubsituenten entlang eines Polyphenylenrückgrats eingebaut, die nach Kondensation mit dem Stickstoffatom eine Zickzack-Kante ergeben. Innerhalb der synthetisierten Zielstrukturen kann das 9a-Azaphenalen als letztes, bislang nicht erschlossenes Isomer der Azaphenalene, als wiederkehrende Struktur, gefunden werden. Die Reaktivität der Zickzackkante konnte zudem zum Aufbau einer Vielzahl bislang unzugänglicher, polycyclischer Heteroaromaten über 1,3-dipolare Addition dieses polycyclischen Azomethin Ylides (PAMY) genutzt werden.rn
Resumo:
Gewebe, Zellen und speziell Zellkompartimente unterscheiden sich in ihrer Sauerstoffkonzentration, Stoffwechselrate und in der Konzentration an gebildeten reaktiven Sauerstoffspezies. Um eine mögliche Änderung in der Aminosäurennutzung durch den Einfluss von Sauerstoff und seinen reaktiven Spezies untersuchen zu können wurden, Bereiche bzw. Kompartimente der menschlichen Zelle definiert, die einen Referenzrahmen bildeten und bekannt dafür sind, einen relativ hohen Grad an reaktiven Sauerstoffspezies aufzuweisen. Aus dem Vergleich wurde deutlich, dass vor allem die beiden redox-aktiven und schwefeltragenden Aminosäuren Cystein und Methionin durch eine besondere Verteilung und Nutzung charakterisiert sind. Cystein ist hierbei diejenige Aminosäure mit den deutlichsten Änderungen in den fünf untersuchten Modellen der oxidativen Belastung. In all diesen Modellen war die Nutzung von Cystein deutlich reduziert, wohingegen Methionin in Proteinen des Mitochondriums und der Elektronentransportkette angereichert war. Dieser auf den ersten Blick paradoxe Unterschied zwischen Cystein und Methionin wurde näher untersucht, indem die differenzierte Methioninnutzung in verschiedenen Zellkompartimenten von Homo sapiens charakterisiert wurde.rnDie sehr leicht zu oxidierende Aminosäure Methionin zeigt ein ungewöhnliches Verteilungsmuster in ihrer Nutzungshäufigkeit. Entgegen mancher Erwartung wird Methionin in zellulären Bereichen hoher oxidativer Belastung und starker Radikalproduktion intensiv verwendet. Dieses Verteilungsmuster findet man sowohl im intrazellulären Vergleich, als auch im Vergleich verschiedener Spezies untereinander, was daraufhin deutet, dass es einen lokalen Bedarf an redox-aktiven Aminosäuren gibt, der einen sehr starken Effekt auf die Nutzungshäufigkeit von Methionin ausübt. Eine hohe Stoffwechselrate, die im Allgemeinen mit einer erhöhten Produktion von Oxidantien assoziiert wird, scheint ein maßgeblicher Faktor der Akkumulation von Methionin in Proteinen der Atmungskette zu sein. Die Notwendigkeit, oxidiertes Antioxidans wieder zu reduzieren, findet auch bei Methionin Anwendung, denn zu Methioninsulfoxid oxidiertes Methionin wird durch die Methioninsulfoxidreduktase wieder zu Methionin reduziert. Daher kann die spezifische Akkumulation von Methionin in Proteinen, die verstärkt reaktiven Sauerstoffspezies ausgesetzt sind, als eine systematische Strategie angesehen werden, um andere labile Strukturen vor ungewollter Oxidation zu schützen. rnDa Cystein in allen untersuchten Modellen der oxidativen Belastung und im Besonderen in Membranproteinen der inneren Mitochondrienmembran lebensspannenabhängig depletiert war, wurde dieses Merkmal näher untersucht. Deshalb wurde die Hypothese getestet, ob ein besonderer Redox-Mechanismus der Thiolfunktion für diese selektive Depletion einer im Allgemeinen als harmlos oder antioxidativ geltenden Aminosäure verantwortlich ist. Um den Effekt von Cysteinresten in Membranen nachzustellen, wurden primäre humane Lungenfibroblasten (IMR90) mit diversen Modellsubstanzen behandelt. Geringe Konzentrationen der lipophilen Substanz Dodecanthiol verursachten eine signifikante Toxizität in IMR90-Zellen, die von einer schnellen Zunahme an polyubiquitinierten Proteinen und anderen Indikatoren des proteotoxischen Stresses, wie Sequestosom 1 (P62), HSP70 und HSP90 begleitet wurde. Dieser Effekt konnte spezifisch der Chemie der Thiolfunktion in Membranen zugeordnet werden, da Dodecanol (DOH), Dodecylmethylsulfid (DMS), Butanthiol oder wasserlösliche Thiole weder eine cytotoxische Wirkung noch eine Polyubiquitinierung von Proteinen verursachten. Die Ergebnisse stimmen mit der Hypothese überein, dass Thiole innerhalb von biologischen Membranen als radikalische Kettentransferagentien wirken. Diese Eigenschaft wird in der Polymerchemie durch Nutzung von lipophilen Thiolen in hydrophoben Milieus technisch für die Produktion von Polymeren benutzt. Da die Thiylradikal-spezifische Reaktion von cis-Fettsäuren zu trans-Fettsäuren in 12SH behandelten Zellen verstärkt ablief, kann gefolgert werden, dass 12SH zellulär radikalisiert wurde. In lebenden Organismen kann demnach die Oxidation von Cystein die Schädigung von Membranen beschleunigen und damit Einfallstore für die laterale Radikalisierung von integralen Membranproteinen schaffen, welche möglicherweise der Langlebigkeit abträglich ist, zumindest, wenn sie in der inneren Mitochondrienmembran auftritt.
Resumo:
Addressing current limitations of state-of-the-art instrumentation in aerosol research, the aim of this work was to explore and assess the applicability of a novel soft ionization technique, namely flowing atmospheric-pressure afterglow (FAPA), for the mass spectrometric analysis of airborne particulate organic matter. Among other soft ionization methods, the FAPA ionization technique was developed in the last decade during the advent of ambient desorption/ionization mass spectrometry (ADI–MS). Based on a helium glow discharge plasma at atmospheric-pressure, excited helium species and primary reagent ions are generated which exit the discharge region through a capillary electrode, forming the so-called afterglow region where desorption and ionization of the analytes occurs. Commonly, fragmentation of the analytes during ionization is reported to occur only to a minimum extent, predominantly resulting in the formation of quasimolecular ions, i.e. [M+H]+ and [M–H]– in the positive and the negative ion mode, respectively. Thus, identification and detection of signals and their corresponding compounds is facilitated in the acquired mass spectra. The focus of the first part of this study lies on the application, characterization and assessment of FAPA–MS in the offline mode, i.e. desorption and ionization of the analytes from surfaces. Experiments in both positive and negative ion mode revealed ionization patterns for a variety of compound classes comprising alkanes, alcohols, aldehydes, ketones, carboxylic acids, organic peroxides, and alkaloids. Besides the always emphasized detection of quasimolecular ions, a broad range of signals for adducts and losses was found. Additionally, the capabilities and limitations of the technique were studied in three proof-of-principle applications. In general, the method showed to be best suited for polar analytes with high volatilities and low molecular weights, ideally containing nitrogen- and/or oxygen functionalities. However, for compounds with low vapor pressures, containing long carbon chains and/or high molecular weights, desorption and ionization is in direct competition with oxidation of the analytes, leading to the formation of adducts and oxidation products which impede a clear signal assignment in the acquired mass spectra. Nonetheless, FAPA–MS showed to be capable of detecting and identifying common limonene oxidation products in secondary OA (SOA) particles on a filter sample and, thus, is considered a suitable method for offline analysis of OA particles. In the second as well as the subsequent parts, FAPA–MS was applied online, i.e. for real time analysis of OA particles suspended in air. Therefore, the acronym AeroFAPA–MS (i.e. Aerosol FAPA–MS) was chosen to refer to this method. After optimization and characterization, the method was used to measure a range of model compounds and to evaluate typical ionization patterns in the positive and the negative ion mode. In addition, results from laboratory studies as well as from a field campaign in Central Europe (F–BEACh 2014) are presented and discussed. During the F–BEACh campaign AeroFAPA–MS was used in combination with complementary MS techniques, giving a comprehensive characterization of the sampled OA particles. For example, several common SOA marker compounds were identified in real time by MSn experiments, indicating that photochemically aged SOA particles were present during the campaign period. Moreover, AeroFAPA–MS was capable of detecting highly oxidized sulfur-containing compounds in the particle phase, presenting the first real-time measurements of this compound class. Further comparisons with data from other aerosol and gas-phase measurements suggest that both particulate sulfate as well as highly oxidized peroxyradicals in the gas phase might play a role during formation of these species. Besides applying AeroFAPA–MS for the analysis of aerosol particles, desorption processes of particles in the afterglow region were investigated in order to gain a more detailed understanding of the method. While during the previous measurements aerosol particles were pre-evaporated prior to AeroFAPA–MS analysis, in this part no external heat source was applied. Particle size distribution measurements before and after the AeroFAPA source revealed that only an interfacial layer of OA particles is desorbed and, thus, chemically characterized. For particles with initial diameters of 112 nm, desorption radii of 2.5–36.6 nm were found at discharge currents of 15–55 mA from these measurements. In addition, the method was applied for the analysis of laboratory-generated core-shell particles in a proof-of-principle study. As expected, predominantly compounds residing in the shell of the particles were desorbed and ionized with increasing probing depths, suggesting that AeroFAPA–MS might represent a promising technique for depth profiling of OA particles in future studies.
Resumo:
Background During production and processing of multi-walled carbon nanotubes (MWCNTs), they may be inhaled and may enter the pulmonary circulation. It is essential that interactions with involved body fluids like the pulmonary surfactant, the blood and others are investigated, particularly as these interactions could lead to coating of the tubes and may affect their chemical and physical characteristics. The aim of this study was to characterize the possible coatings of different functionalized MWCNTs in a cell free environment. Results To simulate the first contact in the lung, the tubes were coated with pulmonary surfactant and subsequently bound lipids were characterized. The further coating in the blood circulation was simulated by incubating the tubes in blood plasma. MWCNTs were amino (NH2)- and carboxyl (-COOH)-modified, in order to investigate the influence on the bound lipid and protein patterns. It was shown that surfactant lipids bind unspecifically to different functionalized MWCNTs, in contrast to the blood plasma proteins which showed characteristic binding patterns. Patterns of bound surfactant lipids were altered after a subsequent incubation in blood plasma. In addition, it was found that bound plasma protein patterns were altered when MWCNTs were previously coated with pulmonary surfactant. Conclusions A pulmonary surfactant coating and the functionalization of MWCNTs have both the potential to alter the MWCNTs blood plasma protein coating and to determine their properties and behaviour in biological systems.
Resumo:
During a half-day symposium, the topic 'Channels and Transporters' was covered with five lectures, including a presentation on 'Introduction and Basics of Channels and Transporters' by Beat Ernst, lectures on structure, function and physiology of channels and transporters ('The Structural Basis for Ion Conduction and Gating in Pentameric Ligand-Gated Ion Channels' by Raimund Dutzler and 'Uptake and Efflux Transporters for Endogenous Substances and for Drugs' by Dietrich Keppler), and a case study lecture on 'Avosentan' by Werner Neidhart. The program was completed by Matthias Hediger who introduced to the audience the National Center of Competence in Research (NCCR)-TransCure in his lecture entitled 'From Transport Physiology to Identification of Therapeutic Targets'.