966 resultados para quantum well lasers
Resumo:
An analysis is made of the conditions for the generation of superfluorescence pulses in an inverted medium of electron-hole pairs in a semiconductor. It is shown that strong optical amplification in laser semiconductor amplifiers characterised by αL ≫ 1 (α is the small-signal gain and L is the amplifier length) leads to suppression of phase relaxation of the medium during the initial stages of evolution of superfluorescence and to formation of a macroscopic dipole from electron - hole pairs. Cooperative emission of radiation in this system results in generation of a powerful ultrashort pulse of the optical gain, which interacts coherently with the semiconductor medium. It is shown that coherent pulsations of the optical field, observed earlier by the author in Q-switched semiconductor lasers, are the result of superfluorescence and of the coherent interaction between the optical field and the medium.
Resumo:
The basic ideas and current state of the art of ultrashort pulse generation by injection lasers are reviewed. All developed techniques, including gain switching, Q-switching, and mode-locking are described and compared. A simple theoretical treatment of a diode laser which emits picosecond light pulses is discussed. Some fundamental limits of the pulse parameters are discussed. Finally, compression of chirped optical pulses by optical fibres and the soliton effect is considered. © 1992 Chapman & Hall.
Resumo:
We demonstrate quantum key distribution (QKD) with bidirectional 10 Gb/s classical data channels in a single fiber using dense wavelength division multiplexing. Record secure key rates of 2.38 Mbps and fiber distances up to 70km are achieved. Data channels are simultaneously monitored for error-free operation. The robustness of QKD is further demonstrated with a secure key rate of 445 kbps over 25km, obtained in the presence of data lasers launching conventional 0 dBm power. We discuss the fundamental limit for the QKD performance in the multiplexing environment. © 2014 AIP Publishing LLC.
Resumo:
The third-order optical nonlinear refractive properties of InAs/GaAs quantum dots grown by molecular beam epitaxy have been measured using the reflection Z-scan technique at above-bandgap energy. The nonlinear refractive index and nonlinear absorption index of the InAs/GaAs quantum dots were determined for wavelengths from 740 to 777 nm. The measured results are compared with the nonlinear refractive response of several typical III-V group semiconductor materials. The corresponding mechanisms responsible for the large nonlinear response are discussed.
Resumo:
The refractive nonlinearities of InAs/GaAs quantum dots under a dc electric field at photon energies above its band gap energy have been studied using the reflection Z-scan technique. The effect of the dc electric field on the nonlinear response of InAs/GaAs quantum dots showed similar linear and quadratic electro-optic effects as in the linear response regime at low fields. This implies that the electro-optic effect in the nonlinear regime is analogous to the response in the linear regime for semiconductor quantum dots. Our experimental results show the potential for voltage tunability in InAs quantum dot-based nonlinear electro-optic devices.
Resumo:
The gain recoveries in quantum dot semiconductor optical amplifiers (QD SOAs) are numerically studied by rate equation simulation. Similar to the optical pump-probe experiment, the injection of double 150 fs optical pulses is used to simulate the gain recovery of a weak continuous signal under different injection levels, inhomogeneous broadenings, detuning wavelengths, and pulse signal energies for the QD SOAs. The obtained gain recoveries are then fitted by a response function with multiple exponential terms to determine the response times. The gain recovery can be described by three exponential terms with the time constants, which can be explained as carrier relaxation from the excited state to the ground state, carrier captured by the excited state from the wetting layer, and the supply of the wetting layer carriers. The fitted lifetimes decrease with the increase of the injection currents under gain unsaturation, slightly decrease with the decrease of inhomogeneous broadening of QDs, and increase with the increase of detuning wavelength between continuous signal and pulse signal and the increase of the pulse energy.
Resumo:
Photoluminescence (PL) and lasing properties of InAs/GaAs quantum dots (QDs) with direrent growth procedures prepared by metalorganic chemical vapour deposition are studied. PL measurements show that the low growth rate QD sample has a larger PL intensity and a narrower PL line width than the high growth rate sample. During rapid thermal annealing, however, the lowgrowth rate sample shows a greater blue shift of PL peak wave length. This is caused by the larger InAs layer thickness which results from the larger 2-3 dimensional transition critical layer thickness for the QDs in the low-growth-rate sample. A growth technique including growth interruption and in-situ annealing, named indium flush method, is used during the growth of GaAs cap layer, which can flatten the GaAs surface effectively. Though the method results in a blue shift of PL peak wavelength and a broadening of PL line width, it is essential for the fabrication of room temperature working QD lasers.
Resumo:
The optical properties of GaAs/AlGaAs thin films with photonic crystals were investigated by measuring their photoluminescence spectra. The spectral intensities, lifetimes, and quantum efficiencies decreased greatly compared with those in blank material without photonic crystals. The quantum efficiencies in the material were also calculated from spectral intensities and lifetimes and the quantum efficiencies calculated from those two methods agreed with each other to some extent.
Resumo:
The electronic structure of rutile TiO2 quantum dots (QDs) are investigated via the first-principles band structure method. We first propose a model to passivate the rutile TiO2 surfaces for the local density approximation calculations. In this model pseudohydrogen atoms are used to passivate the surface dangling bonds, which remove the localized in-cap surface states in the TiO2 QDs. As the size of the QD decreases, the band gap evolves as E-g(dot) = E-g(bulk) + 73.70/d(1.93), where E-g(dot) and d are the band gap and diameter of the QD, and E-g(bulk) is the band gap of the bulk rutile TiO2. The valence band maximum and the conduction band minimum states of the QDs are distributed mostly in the interior of the QDs, and they well inherit the atomic characteristics of those states of the bulk rutile TiO2.
Resumo:
In this letter, we propose an n-type vertical transition bound-to-continuum Ge-SiGe quantum cascade structure utilizing electronic quantum wells in the L and F valleys of the Ge layers. The optical transition levels are located in the quantum wells in the L valley. Under a bias of 80 kV/cm, the carriers in the lower level are extracted by miniband transport and L - Gamma tunneling into the subband in the Gamma well of the next period. And then the electrons are injected into the upper level by ultrafast intervalley scattering, which not only effectively increases the tunneling rate and suppresses the thermal backfilling of electrons, but also enhances the injection efficiency of the upper level. The performance of the laser is discussed.
Resumo:
The gain saturation behaviors and noise figure are numerically analyzed for quantum-dot semiconductor optical amplifiers (QD-SOAs). The carrier and photon distributions in the longitudinal direction as well as the photon energy dependent facet reflectivity are accounted in the rate equations, which are solved with output amplified spontaneous emission spectrum as iterative variables. The longitudinal distributions of the occupation probabilities and spectral-hole burning are presented for electrons in the excited and ground states of quantum dots. The saturation output power 19.7 dBm and device gain 20.6 dB are obtained for a QD-SOA with the cavity length of 6 rum at the bias current of 500 mA. The influences of them electron intradot relaxation time and the QD capture time on the gain spectrum are simulated with the relaxation time of 1, 30, and 60 ps and capture time of 1, 5, and 10 ps. The noise figure as low as 3.5 dB is expected due to the strong polarization sensitive spontaneous emission. The characteristics of gain saturation and noise figure versus input signal power for QD-SOAs are similar to that of semiconductor. linear optical amplifiers with gain clamping by vertical laser fields.
Resumo:
The effect of the growth temperature on the surface and interface quality for the GaN/AlN multiquantum well (MQW) layer grown by metal-organic vapour chemical deposition is investigated. The obtained GaN/AlN MQW structure is almost coherent to the underlying AlGaN layer at improved growth conditions. With a relatively low growth temperature, the GaN/AlN MQW growth rate increases, the surface roughness reduces considerably and no macro steps are observed, resulting in a better periodicity of MQW.
Resumo:
We investigated the transmission probability of a single electron transmission through a quantum ring device based on the single-band effective mass approximation method and transfer matrix theory. The time-dependent Schrodinger equation is applied on a Gaussian wave packet passing through the quantum ring system. The electron tunneling resonance peaks split when the electron transmits through a double quantum ring. The splitting energy increases as the distance between the two quantum rings decreases. We studied the tunneling time through the single electron transmission quantum ring from the temporal evolution of the Gaussian wave packet. The electron probability density is sensitive to the thickness of the barrier between the two quantum rings. (C) 2008 American Institute of Physics.
Resumo:
Excitation power-dependent micro-photoluminescence spectra and photon-correlation measurement are used to study the optical properties and photon statistics of single InAs quantum dots. Exciton and biexciton emissions, whose photoluminescence intensities have linear and quadratic excitation power dependences, respectively, are identified. Under pulsed laser excitation, the zero time delay peak of second order correlation function corresponding to exciton emission is well suppressed, which is a clear evidence of single photon emission.
Resumo:
The electronic states of a hydrogenic donor impurity in GaAs/GaAlAs quantum wells are investigated theoretically in the framework of effective-mass envelope function theory, including the effect of Rashba spin-orbit coupling. The splits of electron energy levels are calculated. The results show that (1) the split energy of the excited state is larger than that of the ground state; (2) the split energy peak appears as the GaAs well width increases from zero; and (3) the maximum split energy reaches about 1.6 meV. Our results are useful for the application of Rashba spin-orbit coupling to photoelectric devices. (c) 2008 American Institute of Physics.