1000 resultados para muscle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study identified the protein PARL (Presenilin-associated rhomboid like) as a potential mediator of the mitochondrial abnormalities that are observed in diabetic skeletal muscle. This was demonstrated by analysing PARL expression in an animal model of type 2 diabetes and by investigating the biological effects of genetic variation in the human PARL gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding muscle adaptation and repair is vital for preserving muscle loss with aging. Analysis of the inflammatory-responsive signalling pathway, JAK/STAT was performed. After intense exercise, the STAT3 pathway is highly activated, potentially by the pro-inflammatory regulator IL-6. This pathway is suppressed in older individuals, possible leading to altered inflammatory regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The collective findings of this dissertation demonstrated little effect of exercise on the absolute or relative expression of glycogen regulatory proteins associated with a glycogen enriched fraction in human skeletal muscle. However the findings of this thesis help inform methodological approaches to future investigations into glycogen-protein associations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neural adaptations that mediate the increase in strength in the early phase of a strength training program are not well understood; however, changes in neural drive and corticospinal excitability have been hypothesized. To determine the neural adaptations to strength training, we used transcranial magnetic stimulation (TMS) to compare the effect of strength training of the right elbow flexor muscles on the functional properties of the corticospinal pathway. Motorevoked potentials (MEPs) were recorded from the right biceps brachii (BB) muscle from 23 individuals (training group; n = 13 and control group; n = 10) before and after 4 weeks of progressive overload strength training at 80% of 1-repetition maximum (1 RM). The TMS was delivered at 10% of the root mean square electromyographic signal (rmsEMG) obtained from a maximal voluntary contraction (MVC) at intensities of 5% of stimulator output below active motor threshold (AMT) until saturation of the MEP (MEP maxl. Strength training resulted in a 28% (p = 0.0001) increase in 1 RM strength, and this was accompanied by a 53% increase (p = 0.05) in the amplitude of the MEP at AMT; 33% (p = 0.05) increase in MEP at 20% above AMT, and a 38% increase at MEPmax (p = 0.04). There were no significant differences in the estimated slope (p = 0.4 7) or peak slope of the stimulus-response curve for the left primary motor cortex (M1) after strength training (p = 0.61). These results demonstrate that heavy-load isotonic strength training alters neural transmission via the corticospinal pathway projecting to the motoneurons controlling BB and in part underpin the strength changes observed in this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coenzyme Q10 (CoQ10) is commonly consumed as an antiaging supplement at doses of 30–210 mg/day. The aim of the study was to determine if CoQ10 alters markers of antioxidant status, oxidative damage, and gene expression in aging skeletal muscle. Female guinea pigs aged 26 months were supplemented for 6 weeks with CoQ10 at a human equivalent dose of 10 mg/kg/day. Body weight, plasma CoQ10 concentration, and WBC DNA abasic sites were measured at weeks 0, 2, 4, and 6 of the supplementation period. At the end of supplementation, concentrations of skeletal muscle CoQ10, glutathione, malondialdehyde, protein carbonyls, DNA abasic sites, activities of catalase and glutathione peroxidase, and the gene expression of cyctochrome c oxidase subunits were measured. Dietary supplementation with CoQ10 elevated plasma CoQ10 levels (pre 73 ± 3 nmol/L, post 581 ± 15 nmol/L, P < 0.05) and decreased abasic sites in WBC DNA (pre 16.8 ± 0.5 Ap/100000 bp, post 9.7 ± 0.4 Ap/100000 bp, P < 0.05). In contrast, all of the measures made in skeletal muscle were not different between groups (P > 0.05). These results indicate that dietary supplementation with CoQ10 at a dose of 10 mg/kg/day may be capable of increasing antioxidant protection and reducing oxidative damage in the plasma, but may have no effect in skeletal muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lipid and fatty acid (FA) contents of muscle, gonad and digestive glands (DG) of Jade Tiger hybrid abalone were studied over the four seasons. Higher contents of total lipid and saturated fatty acids (SFA) were found in summer from muscle. For gonad the higher total lipid content was found in summer and spring whereas the SFA content peaked in summer only. For DG the higher contents of total lipid and SFA were recorded in all seasons except autumn. Winter samples showed significantly higher content of PUFA in all three types of tissue. High contents of eicosapentaenoic acid (EPA, 20:5 n−3), docosapentaenoic acid (DPA, 22:5 n−3) and docosahexaenoic acid (DHA, 22:6 n−3) were recorded in winter from muscle, although no marked variations were observed from gonad. For DG the high content of DHA was also observed in winter whilst EPA and DPA maintained high levels in all seasons except summer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type 2 diabetes mellitus (T2DM) and aging are characterized by insulin resistance and impaired mitochondrial energetics. In lower organisms, remodeling by the protease pcp1 (PARL ortholog) maintains the function and lifecycle of mitochondria. We examined whether variation in PARL protein content is associated with mitochondrial abnormalities and insulin resistance. PARL mRNA and mitochondrial mass were both reduced in elderly subjects and in subjects with T2DM. Muscle knockdown of PARL in mice resulted in malformed mitochondrial cristae, lower mitochondrial content, decreased PGC1α protein levels, and impaired insulin signaling. Suppression of PARL protein in healthy myotubes lowered mitochondrial mass and insulin-stimulated glycogen synthesis and increased reactive oxygen species production. We propose that lower PARL expression may contribute to the mitochondrial abnormalities seen in aging and T2DM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We generated a mouse line with a missense mutation (S248F) in the gene (CHRNA4) encoding the α4 subunit of neuronal nicotinic acetylcholine receptor (nAChR). Mutant mice demonstrate brief nicotine induced dystonia that resembles the clinical events seen in patients with the same mutation. Drug-induced dystonia is more pronounced in female mice, thus our aim was to determine if the S248F mutation changed the properties of fast- and slow-twitch muscle fibres from female mutant mice. Reverse transcriptase-PCR confirmed CHRNA4 gene expression in the brain but not skeletal muscles in normal and mutant mice. Ca2+ and Sr2+ force activation curves were obtained using skinned muscle fibres prepared from slow-twitch (soleus) and fast-twitch (EDL) muscles. Two significant results were found: (1) the (pCa50 - pSr50) value from EDL fibres was smaller in mutant mice than in wild type (1.01 vs. 1.30), (2) the percentage force produced at pSr 5.5 was larger in mutants than in wild type (5.76 vs. 0.24%). Both results indicate a shift to slow-twitch characteristics in the mutant. This conclusion is supported by the identification of the myosin heavy chain (MHC) isoforms. Mutant EDL fibres expressed MHC I (usually only found in slow-twitch fibres) as well as MHC IIa. Despite the lack of spontaneous dystonic events, our findings suggest that mutant mice may be having subclinical events or the mutation results in a chronic alteration to muscle neural input.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skeletal muscle atrophy occurs in many chronic diseases and disuse conditions. Its severity reduces patient recovery, independence and quality of life. The discovery of two muscle-specific E3 ubiquitin ligases, MAFbx/ atrogin-1 and Muscle RING Finger-1 (MuRF1), promoted an expectation of these molecules as targets for therapeutic development. While numerous studies have determined the conditions in which MAFbx/atrogin-1 and MuRF1 mRNA levels are regulated, few studies have investigated their functional role in skeletal muscle. Recently, studies identifying new target substrates for MAFbx/atrogin-1 and
MuRF1, outside of their response to the initiation of muscle atrophy, suggest that there is more to these proteins than
previously appreciated. This review will highlight our present knowledge of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy, the impact of potential therapeutics and their known regulators and substrates. Finally, we will comment on new approaches that may expand our knowledge of these two molecules in their control of skeletal muscle function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The TGF-Ý superfamily comprises a large group of proteins with many effects on muscle growth and maturation. The molecular regulation of skeletal muscle regeneration and metabolism in response to prominent superfamily members, myostatin and TGF-Ý1, were analysed, demonstrating the importance of this pathway in controlling how muscles grow and are regulated.