977 resultados para crustal stretching


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kunyushan composite granite pluton is located in northeast part of the Sulu UHP collisional belt, Jiaodong peninsula, eastern China. It is regarded as the boundary of the Jiaodong block and the Sulu UHP collisional belt. The body is unique in the Dabieshan-Sulu UHP collisional orogen for its feature of multiple intrusions of diverse types granitoid rocks in a long span after UHP the collision between the North China and the Yangtze plates in late Triassic. It can be grouped into four series on the basis of petrology and petrochemistry. They are mid-K calc-alkaline granitoids, strongly peraluminous granites, high-K calc-alkaline granitoids and syenitic granite of shoshonitic series. In this thesis, the later three types of rocks are investigated geochronologically in detail. The grain zircon U-Pb isotope dilution dating technique has been employed in this study. Zircon morphology are presented and discussion on the chemical and physical conditions of the granite formation have been carried out in addtion. Strongly peraluminous granites comprises foliated monzogranite and garnet bearing leucogranite. They occupy more than half of the area of the Kunyushan composite body. Three zircon samples of foliated monzogranites have been analyzed, they yield lower intercept ages mainly in the range of 140-150 Ma. The formation of these rocks was likely to be at 700-600 ℃, implied by zircon morphology. Two zircon samples of the garnet bearing leucogranite yield lower intercept ages from 130 Ma to 140 Ma. Zircon morphology indicate that the liquidus temperature of the magma was about 750 °C. Syenitic granite of shoshonitic series occur in the north central part of the body, and the volume is quite small contrast to other types. One zircon sample was chosen from this rock, and yield lower intercept age of 121+1.8/-2.1 Ma. Zircon morphology indicate that the liquidus temperature of this rock is up to 900 °C, which is much higher than others'. High-K calc-alkaline granitoids can be divided into two types on the basis of rock texture and structure. One is Kf-porphyritic monzogranite. It's outcrop is quite small. Zircon ages of one sample constrain the emplacement of this rock at about 112 Ma. The other is medium-grain to coarse-grain monzogranite. Zircons from it yield lower intercept age of 100.5+2.9/-4.6 Ma. The variation of zircon morphology suggest that these two monzogranites were outcomes of a single magma at different stage. The former emplaced earlier than the latter. The liquidus temperature of the magma was about 800 ℃ Inherited zircon is ubiquitous in the Kunyushan composite body. Most of the samples yield upper intercept ages of late Proterozoic. It was considered that only the Yangtze plate underwent a crustal growth during late Proterozoic among the two plates which involved into the UHP collision. Inherited zircon of about 200 Ma can also be observed in strongly peraluminous and high-K calc-alkaline granitoids. Two samples out of eight yield upper intercept ages of Achaean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

River is a major component of the global surface water and CO2 cycles. The chemistry of river waters reveals the nature of weathering on a basin-wide scale and helps us understand the exogenic cycles of elements in the continent-river-ocean system. In particular, geochemical investigation of large river gives important information on the biogeochemical cycles of the elements, chemical weathering rates, physical erosion rates and CO2 consumption during the weathering of the rocks within the drainage basin. Its importance has led to a number of detailed geochemical studies on some of the world's large and medium-size river systems. Flowing in the south of China, the Xijiang River is the second largest river in the China with respect to its discharge, after the Yangtze River. Its headwaters drain the YunGui Plateau, where altitude is approximately 2000 meters. Geologically, the carbonate rocks are widely spread in the river drainage basin, which covers an area of about 0.17xl06 km2, i.e., 39% of the whole drainage basin. This study focuses on the chemistry of the Xijiang river system and constitutes the first geochemical investigation into major and trace elements concentrations for both suspended and dissolved loads of this river and its main tributaries, and Sr isotopic composition of the dissolved load is also investigated, in order to determine both chemical weathering and mechanical erosion rates. As compared with the other large rivers of the world, the Xijiang River is characterized by higher major element concentration. The dissolved major cations average 1.17, 0.33, 0.15, and 0.04 mmol I"1 for Ca, Mg, Na, and K, respectively. The total cation concentrations (TZ+) in these rivers vary between 2.2 and 4.4 meq I'1. The high concentration of Ca and Mg, high (Ca+Mg)/(Na+K) ratio (7.9), enormous alkalinity and low dissolved SiO2/HCO3 ratio (0.05) in river waters reveal the importance of carbonate weathering and relatively weak silicate weathering over the river drainage basin. The major elements in river water, such as the alkalis and alkaline-earths, are of different origins: from rain water, silicate weathering, carbonate and evaporite weathering. A mixing model based on mass budget equation is used in this study, which allows the proportions of each element derived from the different source to be calculated. The carbonate weathering is the main source of these elements in the Xijiang drainage basin. The contribution of rainwater, especially for Na, reaches to approximately 50% in some tributaries. Dissolved elemental concentration of the river waters are corrected for rain inputs (mainly oceanic salts), the elemental concentrations derived from the different rock weathering are calculated. As a consequence, silicate, carbonate and total rock weathering rates, together with the consumption rates of atmospheric CO2 by weathering of each of these lithologies have been estimated. They provide specific chemical erosion rates varying between 5.1~17.8 t/km2/yr for silicate, 95.5~157.2 t/km2/yr for carbonate, and 100.6-169.1 t/km2/yr for total rock, respectively. CO2 consumptions by silicate and carbonate weathering approach 13><109and 270.5x10 mol/yr. Mechanical denudation rates deduced from the multi-year average of suspended load concentrations range from 92-874 t/km2/yr. The high denudation rates are mainly attributable to high relief and heavy rainfall, and acid rain is very frequent in the drainage basin, may exceed 50% and the pH value of rainwater may be <4.0, result from SO2 pollution in the atmosphere, results in the dissolution of carbonates and aluminosilicates and hence accelerates the chemical erosion rate. The compositions of minerals and elements of suspended particulate matter are also investigated. The most soluble elements (e.g. Ca, Na, Sr, Mg) are strongly depleted in the suspended phase with respect to upper continent crust, which reflects the high intensity of rock weathering in the drainage basin. Some elements (e.g. Pb, Cu, Co, Cr) show positive anomalies, Pb/Th ratios in suspended matter approach 7 times (Liu Jiang) to 10 times (Nanpan Jiang) the crustal value. The enrichment of these elements in suspended matter reflects the intensity both of anthropogenic pollution and adsorption processes onto particles. The contents of the soluble fraction of rare earth elements (REE) in the river are low, and REE mainly reside in particulate phase. In dissolved phase, the PAAS-normalized distribution patterns show significant HREE enrichment with (La/Yb) SN=0.26~0.94 and Ce depletion with (Ce/Ce*) SN=0.31-0.98, and the most pronounced negative Ce anomalies occur in rivers of high pH. In the suspended phase, the rivers have LREE-enriched patterns relative to PAAS, with (La/Yb) SN=1 -00-1 .40. The results suggest that pH is a major factor controlling both the absolute abundances of REE in solution and the fractionation of REE of dissolved phase. Ce depletion in river waters with high pH values results probably from both preferential removal of Ce onto Fe-Mn oxide coating of particles and CeC^ sedimentation. This process is known to occur in the marine environment and may also occur in high pH rivers. Positive correlations are also observed between La/Yb ratio and DOC, HCO3", PO4", suggesting that colloids and (or) adsorption processes play an important role in the control of these elements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on multi-principle (such as structures, tectonics and kinematics) exploratory data and related results of continental dynamics in the Tibetan plateau, the author reconstructed the geological-geophysical model of lithospherical structure and tectonic deformation, and the kinetics boundary conditions for the model. Then, the author used the numerical scheme of Fast Lagrangian Analysis of Continua (FLAC), to stimulate the possible process of the stress field and deformational field in the Tibetan plateau and its adjacent area, since the convergence-collision between the Indian continent and Eurasia continent about 50Ma ago. With the above-mentioned results, the author discussed the relationship between crustal movement in shallow layer and the deformational process in interior layers, and its possible dynamic constraints in deep. At the end of the paper, an integrative model has been put forward to explain the outline images of crust-mantle deformation and coupling in the Tibetan Plateau. (1) The characteristics of crust-mantle structure of the Tibetan plateau have been shown to be very complex, and vertical and horizontal difference is significant. The general characteristics of crust-mantle of the Tibetan plateau may be that it's layering in depth direction, and shows blocking from south to north and belting from east to west, mainly according to the results of about 20 seismic sections, such as wide-angle seismic profiles, CMP, seismic tomography and so on. (2) The crust had shortened about 2200km, while the shortening is different for different block from south to north in the Tibetan plateau. It is about 11.5mm/a in Himalayan block, about 9.0mm/a in Lhas-Gangdese block, about 7.0mm/a in Qiangtang block and Songpan-Ganzi-Kekexili block, about 8.0mm/a in Kunlun-Qaidam, and about ll.Omm/a in Qilian block, since the convergence-collision between the Indian continent and Eurasia continent about 50Ma ago. Which - in demonstrates the shortening rate decreases from south to north, but this rate increases near the north edge of the Tibetan plateau. The crust thickening rate is about 0.4mm/a in the whole Tibetan plateau; and this rate is about 0.5mm/a in Himalayan block, about 0.4mm/a in Lhas-Gangdese block, about 0.3mm/a in Qiangtang block, about 0.2mm/a in Songpan-Ganzi-Kekexili block and about O.lmm/a in Kunlun-Qaidam-Qilian block, since the convergence-collision between the Indian continent and Eurasia continent about 50Ma ago. This implies that the thickening rate decreases in the blocks of the Tibetan plateau. From south to north, the displacement of eastern boundary in the Tibetan plateau is about 37mm/a in Himalayan block, about 45mm/a in Lhas-Gangdese block, about 47mm/a in Qiangtang block, about 43mm/a in Songpan-Ganzi-Kekexili block, and about 35mm/a in Kunlun-Qaidam-Qilian block, since the collision-matching between the Indian continent and Eurasia continent had happened about 50Ma ago. This implies that the rate of eastward displacement is biggest in the middle of plateau, and decreases to both sides. The transition of S-N compression stress field in Tibetan Plateau, since about 28Ma+ ago, may be caused by two reasons: On one hand, the movement direction of Eurasia continent changed from northward to southward about 28Ma± ago in the northern plateau. On the other hand, the front belt that is located between India continent's and Eurasia continent's convergence-collision, had moved southward to high Himalayan from Indus-Brahmaputra suture almost at the same time in southern plateau. Affected by the stress field, the earlier tectonics rotated clockwise, NE and NW conjugate strike-slip faults developed, and the SN rift formed. This indicated that the EW movement started. The ratio between upper crust and lower crust of different blocks from south to north in the Tibetan plateau during the process of deformation are as following: about 3.5~5:1 in Himalayan block, about 1~5: 3-4 (which is about 1:3o--4 in south and about 4~5:3 in north) in Lhas-Gangdese block, about 1:3~447mm/a in these blocks: Which is located to the north of Banggong-nujiang suture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Dabie Mountains is a collisional orogenic belt between the North China and Yantze Continental plates. It is the eastern elongation of the Tongbai and Qingling orogen, and is truncated at its east end by the Tan-Lu fault. Jadeite-quartzite belt occurs in the eastern margin of UHPMB from the Dabie Mountains. Geochemical features indicate that the protoliths of the jadeite-quartzite and associated eclogite to be supracrustal rocks. The occurrence of micro-inclusions of coesite in jadeite and garnet confirmed that the continental crust can be subducted to great depth (8 0-100km) and then exhumed rapidly with its UHP mineral signature fairly preserved. Therefore, study of UHP jadeite-quartzite provides important information on subduction of continental crustal rocks and their exhumation histories, as well as the dynamics of plate tectonic processes at convergent margins. The purpose of this paper is to investigate the presence of hydrous component in the jadeite-quartzite belt, significant natural variations in the hydrous component content of UHP minerals and to discuss the role of water in petrology, geochemistry and micro-tectonic. On the basis of our previous studies, some new geological evidences have been found in the jadeite-quartzite belt by researches on petrography, mineralogy, micro-tectonic, hydrous component content of UHP minerals and combined with the study on rheology of materials using microprob, ER, TEM. By research and analysis of these phenomenona, the results obtained are as follows: 1. The existence of fluid during ultra-high pressure metamorphic process. Jadeites, omphacite, garnet, rutile, coesite and quartz from the jadeite-quartzite belt have been investigated by Fourier transform infrared spectrometer and TEM. Results show that all of these minerals contain trace amount of water which occur as hydroxyl and free-water in these minerals. The two-type hydrous components in UHP minerals are indicated stable in the mantle-depth. The results demonstrated that these ultra-high pressure metamorphic minerals, which were derived from continental crust protoliths, they could bring water into the mantle depth during the ultra-high pressure metamorphism. The clusters of water molecules within garnet are very important evidence of the existence of fluid during ultra-high pressure metamorphic process. It indicated that the metamorphic system was not "dry"during the ultra-high pressure stage. 2.The distribution of hydrous component in UHP minerals of jadeite-quartzite. The systematic distribution of hydrous components in UHP minerals are a strong indication that water in these minerals, are controlled by some factors and that the observed variations are not of a random nature. The distribution and concentration of hydrous component is not only correlated with composition of minerals, but also a function of geological environment. Therefore, the hydrous component in the minerals can not only take important part in the UHP metamorphic fluid during subduction of continental crustal rocks, but also their hydroxyl transported water molecules with decreasing pressure during their exhumation. And these water molecules can not only promote the deformation of jadeite through hydrolytic weakening, but also may be the part of the retrograde metamorphic fluid. 3.The role of water in the deformed UHP minerals. The jadeite, omphacite, garnet are strong elongated deformation in the jadeite-quartzite from the Dabie Mountains. They are (1) they are developed strong plastic deformation; (2) developed dislocation loop, dislocation wall; (3) the existence of clusters of water molecular in the garnet; and (4) the evolution of micero-tectonic from clusters of water molecular-dislocation loop in omphacite. That indicated that the water weakening controlled the mechanism of deformed minerals. Because the data presented here are not only the existence of clusters of water molecular in the garnet, but also developed strong elongation, high density of dislocation and high aspect ratios, adding microprobe data demonstrate the studied garnet crystals no compositional zoning. Therefore, this indicates that the diffusion process of the grain boundary mobility did not take place in these garnets. On the basis of above features, we consider that it can only be explained by plastic deformation of the garnets. The clusters of water molecules present in garnet was directly associated with mechanical weakening and inducing in plastic deformation of garnet by glissile dislocations. Investigate of LPO, strain analysis, TEM indicated that these clinopyroxenes developed strong elongation, high aspect ratios, and developed dislocation loop, dislocation wall and free dislocations. These indicated that the deformation mechanism of the clinopyroxenes plastically from the Dabie Mountains is dominant dislocation creep under the condition of the UHP metamorphic conditions. There are some bubbles with dislocation loops attached to them in the omphacite crystal. The bubbles attached to the dislocation loops sometimes form a string of bubble beads and some loops are often connected to one another via a common bubble. The water present in omphacite was directly associated with hydrolitic weakening and inducing in plastic deformation of omphacite by dislocations. The role of water in brittle deformation. Using microscopy, deformation has been identified as plastic deformation and brittle deformation in UHP minerals from the Dabie Mountains. The study of micro-tectonic on these minerals shows that the brittle deformation within UHP minerals was related to local stresses. The brittle deformation is interpreted as being caused by an interaction of high fluid pressure, volume changes. The hydroxyl within UHP minerals transported water molecules with decreasing pressure due to their exhumation. However, under eclogite facies conditions, the litho-static pressure is extreme, but a high fluid pressure will reduce the effective stress and make brittle deformation possible. The role of water in prograde metamorphism. Geochemical research on jadeite-quartzite and associated eclogite show that the protoliths of these rocks are supracrustal rocks. With increasing of temperature and pressure, the chlorite, biotite, muscovite was dehydrous reaction and released hydrous component during the subduction of continental lithosphere. The supracrustal rocks were transformed UHP rocks and formed UHP facies assemblage promotely by water introduction, and was retained in UHP minerals as hydrous component. The water within UHP minerals may be one of the retrograde metamorphic fluids. Petrological research on UHP rocks of jadeite-quartzite belt shows that there was existence of local fluids during early retrograde metamorphism. That are: (1) coronal textures and symplectite around relict UHP minerls crystals formed from UHP minerls by hydration reactions; (2) coronal textures of albite around ruitle; and (3) micro-fractures in jadeite or garnet were filled symplectite of Amp + PI + Mt. That indicated that the reactions of early retrograde metamorphism dependent on fluid introduction. These fluids not only promoted retrograde reaction of UHP minerals, but also were facilitate to diffuse intergranular and promote growth in minerals. Therefore, the hydrous component in the UHP minerals can not only take important part in the UHP metamorphic fluid during subduction of continental crustal rocks, but also their hydroxyl transport water molecules with decreasing pressure and may take part in the retrograde metamorphic fluid during their exhumation. 7. The role of water in geochemistry of UHP jadeite-quartzite. Geochemical research show that there are major, trace and rare earth element geochemical variations in the jadeite-quartzite from the Changpu district of Dabie Mountains, during retrograde metamorphic processes from the jadeite-quartzite--gneiss. The elements such as SiO_2、FeO、Ba、Zr、Ga、La、Ce、PTN Nd% Sm and Eu increase gradually from the jadeite-quartzite to retrograded jadeite-quartzite and to gneiss, whilst TiO_2. Na_2CK Fe2O_3、Rb、Y、Nb、Gd、Tb、Dy、Ho、Er、Tm、Yb decrease gradually. And its fO_2 keep nearly unchanged during early retrograde metamorphism, but decreased obviously during later retrograde metamorphism. These indicate that such changes are not only controlled by element transformation between mineralogical phases, but also closely relative to fluid-rock interaction in the decompression retrograde metamorphic processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Muanggang-Dajing area located in the south end of Dahinggan Mts is the only discovered tin-polymetallic minerzalization belt and the only tectonic magmaism zone with middle-upper grade tin-ore deposites in North China. Tin mineralization in this area is believed tn related to Yanshannian granites which is different from those in South China tin belt. Through geochemical study of these granites on the base of fieldworks , thin section observation, major and trace elements as well as isotopic composision determination, the isochronic sequence and petrogenetic series for the granites have been determined. Hi light ing on the petrogenesis of earlier Yanshannian of MOmarh granites, two groups granites with different Neodymium isotopic features have been distinguished. Both belonging to hi-K calc-alkalinic series, their nature of source rocks and.magma processing were restricted, we argue for that the two groups have get the isotopic differences from their sources-middle and later proterozoic juvenial crustal via mantle underplating. From then on , there is a pre-enrichment of tin in this area. The partial melting from a F rich soruses can dissolve and carry more tin from the same some due to the de-connection of melt, which supply the mineralization fluids after a thoroughly evolement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On account of some very peculiar features, such as extremely high Sr and Nd contents which can buffer their primary isotopic signatures against crustal contamination, deep-seated origin within mantle, and quick ascent in lithosphere, carbonatites are very suitable for deciphering the nature of sub-continental lithospheric mantle(SCLM) and receiving widespread attentions all around the world. The Mesozoic carbonatites located in western Shandong was comprehensively investigated in this dissertation. The extremely high REE concentrations, similar spider diagrams to most other carbonatites around the world and high Sr. low Mn contents of apatite from carbonatites confirm their igneous origin. The K depletion of carbonatites from this studies reflect the co-existing of carbonatite melts with pargasite+phlogopite lherzolite rather than phlogopite lherzolite. Geological characteristics and their occumng without associated silicate rocks argue against their origin of fractionation of or liquid immisibility with carbonated silicate melts. In contrast to the low S7Sr/86Sr and high l43Nd/l44Nd of other carbonatites in the world, carbonatites of this studies show EMU features with high S7Sr/86Sr and low l4jNd/144Nd ratios, which imply that this enriched nature was formed through metasomatism of enriched mantle preexisted beneath the Sino-korean craton by partial melts of subducted middle-lower crust of Yangtze craton. In addition to carbonatites, the coeval Mesozoic volcanic rocks from western Shandong were also studied in this dissertation. Mengyin and Pingyi volcanic rocks, which located in the south parts of western Shandong are shoshonite geochemically. while volcanic rocks cropped out in other places are high-K calc-alkaline series. All these volcanic rocks enriched in LREE and LILE. depleted in HFSE, and show TNT(strong negative anomalies in Ta, Nb. Ti) patterns in spider diagrams which are common phenomena in arc-related volcanic rocks. The Sr-Nd-Pb isotopic systematics reveal that the volcanic rocks decrease gradually in 87Sr/86Sr, 206Pb/204Pb, 20SPb/204Pb and increase in TDM from south to north, suggesting the distinction of SCLM beneath Shandong in Mesozoic is more explicit in south-north trending than in east-west trending. The variable features of SCLM can be attributed to the subduction of Yangtze craton beneath Sino-Korean craton, and subsequent metasomatism of SCLM by partial melts of Yangtze lower crust in different extent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Butovskaya, a scholar of Former Soviet Union, first determined the depth of basalt layer in Tashkent Zone by using converted waves on seismogram in 1952. From then on, more and more scholars developed the comprehensive research that imaged the earth interior structures by applying converted waves information. With the digitalization of earthquake observation, The inversion imaging of complete or partial waveform record can efficiently improve inversion quality and widen its usage scope, therefore great progress is made in converted wave imaging. This paper makes a certain study in converted wave imaging on that basis. Transmitted PP waves and converted PS waves are generated when a P-wave propagates through an interface separating two media with large impedance contracts. A PS converted wave is a seismic body wave, which result from the conversion of an incident parent P wave at a boundary within the crust to a refracted S wave. The thickness of a single crustal layer can theoretically be determined by observing, with three-componented seismometer at a single station, the difference in time of the arrival of the parent P wave and the arrival of the PS converted wave. For a multilayered media, PS converted wave arrivals corresponding to each of the layers can theoretically be observed, provided the station is sufficiently from the source of the parent P wave to allow initial penetration of the P wave beneath the deepest layer considered. To avoid the difficulty of picking up transmitted P-wave and converted wave phases, this paper proposed a converted wave migration method by estimating the travel time difference between PS converted wave and PP transmitted wave. To verify its validity, we apply the converted wave PS migration algorithm to synthetic data generated by three forward modeling. The migration results indicate that PS converted wave may be migrated to reconstruct the transmitting interface. This technique is helpful to investigate the deep earth structures by using earthquake data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Ultrahigh Pressure Metamorphic (UHPM) eclogite, which was resulted from deep subduction of crustal continent, is very significant due to its continental dynamic implications. Further more, this kind of rocks experienced great P-T, fluid and stresses changes during its forming and exhumation, causing mineral reactions occur intensively, which resulted in a lot of fantastic micro-texture. The micro-texture was preserved duo to a rapid exhumation of the eclogite. This PhD dissertation takes such micro-textures in 10 Donghai eclogite samples South Sulu UHPM terrene, as research object to reveal the transformation of the eclogite to amphibolite. Microscope and Scanning Electron Microscope were employed to observe the micro-texture. Basing on microprobe analysis of minerals, the ACF projections and iso-con analysis were used to uncover the mineral reactions during the transformation. Micro-texture observation (both of Microcopy and Electron Scanning Microscope), demonstrated: l.The peak mineral assemblage of the researched Donghai eclogites is garnet + omphacite + rutile (+ kyanite + aptite +coesite). 2.The transformation of the Donghai eclogite to amphibolite can be divided into two stages: The earlier one is Symplectization, resulting in the forming of diopside + albite (+magnetite) symplectite that occurred only along the boundary between two adjacent omphacite grains. Other minerals were not involved in such reaction. The latter stage is Fluid-Infiltration of the eclogite, which was caused by fluid-intrusion. The infiltration is demonstrated by amphibolization of the symplectite, decomposition of garnet and the forming of some hydrous minerals such as phengite and epidote, and resulted in an amphibole + plagioclase + phengite + epidote or ziosite assemblage. Basing on microprobe analysis of the minerals, ACF projections indicated: In the ACF diagrams, the two joint lines of peak Grt + Omp and Dio + Ab crossed at Omp projection-point, indicating that the garnet had not taken part in the forming reaction of the Dio + Ab symplectite, just like that had been pointed out by micro-texture observation. In the ACF diagrams, the hornblende + plagioclase + epidote + phengite quadrilateral intersected with Dio + Ab + Grt triangle, demonstrating that the hydrous mineral assemblage was formed by fluid infiltration through garnet, diopside and albite. Iso-con (mass-balance) analysis of the symplectization and infiltration reveals: 1.The symplectization of the omphacite has a very complex mass exchange: Some symplectite gained only silicon from its surroundings; and some one requires Ca, but provides Na to its surroundings; while other symplectite provides Ca, Mg and Fe to its surroundings. 2.The infiltration cause variable mass exchanges occurring among the garnet, diopside and albite: In some eclogite sample, no mass, except H2O, exchange occurred during the infiltration. Meanwhile, there was not any hydrous mineral except hornblende formed in the sample accordingly. In some samples, the mass exchange among the three minerals is complex: amphibolization of the diopside in a symplectite gained Al from garnet, and provided Si and Ca to its surrounding, resulting in a Si, Ca and Al-rich fluid. Correspondingly, there was a lot of phengite and ziosite occurred in the sample. In other samples, the amphibolization of a symplectite provided Fe and Mg besides Si and Ca to its surrounding while gained Al. In such kind of sample, epidote occurred within the hydrous mineral assemblage. Synthesizing the micro-texture observation, ACF analysis and iso-con analysis, we deduced the transformation procedure as following: 1. A symplectite after an omphacite was resulted by one, or two, or all of following mineral reactions together: Jd (Ca-Tsch) +SiO2=Ab (An) (1) 4NaA IS i.A+CaO=2NaAlS i308+Na20+CaAl2S 1208 (2) 2NaAlSi2OB (Jd in Omp)+CaMgSi;,0B(Dio in Omp)-2NaAlSi:,O"(Ab)+Ca0+Mg0 (3) 2(CaAl2Si0fi) (Ca-tsch in Omp)+CaFeSi2O6(Hed in 0mp)-H>2CaAl2Si208(An)+Ca0 + FeO (4) A CO2-rich fluid is suggested as cataclysm for the above reactions, which largely increased the mobility of Ca, Mg and Na resulted from reaction (2), (3) and (4). The immobile product Fe2* combined with rutile to form ilmenite, resulting in rutile + ilmenite symplectite. Or, the Fe was precipitated as hematite locally. A procedure of the fluid infiltration as following is suggested: I .A hydrous fluid intruded into the eclogite, and reacted first with garnet to form hornblende and extra Al, resulting in a hornblende film around the garnet grain and an Al-rich fluid. 2.The Al-rich fluid infiltrated through the symplectite, OH" and part of the Al in the fluid combined with Dio while some Si and Ca in the Dio were dissolved made the Dio transferred to amphibole. Meanwhile, plagioclase-type cation exchange occurred between the fluid and plagioclase in the symplectite, making the plagioclase have a higher An-content. 3.Above infiltration and cation exchange resulted in an Al, Si, Ca (and K, providing the primary hydrous fluid contain K)-rich fluid. 4.Under suitable conditions, the solute in the fluid precipitated to form phengite firstly. After the K element in the fluid was consumed up, ziosite or epidote was formed. If the fluid did not contain any K. element, only ziosite or epidote was precipitated. For those eclogites, where all omphacite had been replaced by symplectite before infiltration, neither element exchange occurred, nor did phengite or epidote form during the infiltration. At the last stage, the garnet was oxidized and breakdown: garnet + H2O = epidote + hornblende + hematite, due to more and more fluid intruding into the eclogite. At this time, all the peak minerals were replaced by amphibolite-phase ones, and the eclogite transformed to an amphibolite completely. Tentative pressure calculation indicates that the infiltration occurred at 3-6kbar (about 10-20km depth), where the deformation mechanics transformed from brittle to ductile yield. At such depth, the surface water can permeate the rocks through fault system, causing a rapid cooling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the large developments of the seismic sources theory, computing technologies and survey instruments, we can model and rebuild the rupture process of earthquakes more realistically. On which earthquake sources' properties and tectonic activities law are realized more clearly. The researches in this domain have been done in this paper as follows. Based on the generalized ray method, expressions for displacement on the surface of a half-space due to an arbitrary oriented shear and tensile dislocation are also obtained. Kinematically, fault-normal motion is equivalent to tensile faulting. There is some evidence that such motion occurs in many earthquakes. The expressions for static displacements on the surface of a layered half-space due to static point moment tensor source are given in terms of the generalized reflection and transmission coefficient matrix method. The validity and precision of the new method is illustrated by comparing the consistency of our results with the analytical solution given by Okada's code employing same point source and homogenous half-space model. The computed vertical ground displacement using the moment tensor solution of the Lanchang_Gengma earthquake displays considerable difference with that of a double couple component .The effect of a soft layer at the top of the homogenous half-space on a shallow normal-faulting earthquake is also analyzed. Our results show that more seismic information would be obtained utilizing seismic moment tensor source and layered half-space model. The rupture process of 1999 Chi-Chi, Taiwan, earthquake investigated by using co-seismic surface displacement GPS observations and far field P-wave records. In according to the tectonic analysis and distributions of aftershock, we introduce a three-segment bending fault planes into our model. Both elastic half-space models and layered-earth models to invert the distribution of co-seismic slip along the Chi-Chi earthquake rupture. The results indicate that the shear slip model can not fit horizontal and vertical co-seismic displacements together, unless we add the fault-normal motion (tensile component) in inversions. And then, the Chi Chi earthquake rupture process was obtained by inversion using the seismograms and GPS observations. Fault normal motions determined by inversion, concentrate on the shallow northern bending fault from Fengyuan to Shuangji where the surface earthquake ruptures reveal more complexity and the developed flexural slip folding structures than the other portions of the rupture zone For understanding the perturbation of surface displacements caused by near-surface complex structures, We have taken a numeric test to synthesize and inverse the surface displacements for a pop-up structure that is composed of a main thrust and a back thrust. Our result indicates that the pop-up structure, the typical shallow complex rupture that occurred in the northern bending fault zone form Fengyuan to Shuangji, can be modeled better by a thrust fault added negative tensile component than by a simple thrust fault. We interpret the negative tensile distributions, that concentrate on the shallow northern bending fault from Fengyuan to Shuangji, as a the synthetic effect including the complexities of property and geometry of rupture. The earthquake rupture process also reveal the more spatial and temporal complexities form Fenyuan to SHuangji. According to the three-components teleseismic records, the S-wave velocity structure beneath the 59 teleseismic stations of Taiwan obtained by using the transform function method and the SA techniques. The integrated results, the 3D crustal structure of Taiwan reveal that the thickest part of crustal local in the western Central Range. This conclusion is consistent with the result form the Bouguer gravity anomaly. The orogenic evolution of Taiwan is young period, and the developing foot of Central Range dose not in static balancing. The crustal of Taiwan stays in the course of dynamic equilibrium. The rupture process of 2003)2,24,Jiashi, Xinjiang earthquake was estimated by the finite fault model using far field broadband P wave records of CDSN and IRIS. The results indicate that the earthquake focal is north dip trust fault including some left-lateral strike slip. The focal mechanism of this earthquake is different form that of earthquakes occurred in 1997 and 1998, but similar to that of 1996, Artux, Xinjiang earthquake. We interpreted that the earthquake caused trust fault due to the Tarim basin pushing northward and orogeny of Tianshan mountain. In the end, give a brief of future research subject: Building the Real Time Distribute System for rupture process of Large Earthquakes Based on Internet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The theory and approach of the broadband teleseismic body waveform inversion are expatiated in this paper, and the defining the crust structure's methods are developed. Based on the teleseismic P-wave data, the theoretic image of the P-wave radical component is calculated via the convolution of the teleseismic P-wave vertical component and the transform function, and thereby a P-wavefrom inversion method is built. The applied results show the approach effective, stable and its resolution high. The exact and reliable teleseismic P waveforms recorded by CDSN and IRIS and its geodynamics are utilized to obtain China and its vicinage lithospheric transfer functions, this region ithospheric structure is inverted through the inversion of reliable transfer functions, the new knowledge about the deep structure of China and its vicinage is obtained, and the reliable seismological evidence is provided to reveal the geodynamic evolution processes and set up the continental collisional theory. The major studies are as follows: Two important methods to study crustal and upper mantle structure -- body wave travel-time inversion and waveform modeling are reviewed systematically. Based on ray theory, travel-time inversion is characterized by simplicity, crustal and upper mantle velocity model can be obtained by using 1-D travel-time inversion preliminary, which introduces the reference model for studying focal location, focal mechanism, and fine structure of crustal and upper mantle. The large-scale lateral inhomogeneity of crustal and upper mantle can be obtained by three-dimensional t ravel-time seismic tomography. Based on elastic dynamics, through the fitting between theoretical seismogram and observed seismogram, waveform modeling can interpret the detail waveform and further uncover one-dimensional fine structure and lateral variation of crustal and upper mantle, especially the media characteristics of singular zones of ray. Whatever travel-time inversion and waveform modeling is supposed under certain approximate conditions, with respective advantages and disadvantages, and provide convincing structure information for elucidating physical and chemical features and geodynamic processes of crustal and upper mantle. Because the direct wave, surface wave, and refraction wave have lower resolution in investigating seismic velocity transitional zone, which is inadequate to study seismic discontinuities. On the contrary, both the converse and reflected wave, which sample the discontinuities directly, must be carefully picked up from seismogram to constrain the velocity transitional zones. Not only can the converse wave and reflected wave study the crustal structure, but also investigate the upper mantle discontinuities. There are a number of global and regional seismic discontinuities in the crustal and upper mantle, which plays a significant role in understanding physical and chemical properties and geodynamic processes of crustal and upper mantle. The broadband teleseismic P waveform inversion is studied particularly. The teleseismic P waveforms contain a lot of information related to source time function, near-source structure, propagation effect through the mantle, receiver structure, and instrument response, receiver function is isolated form teleseismic P waveform through the vector rotation of horizontal components into ray direction and the deconvolution of vertical component from the radial and tangential components of ground motion, the resulting time series is dominated by local receiver structure effect, and is hardly irrelevant to source and deep mantle effects. Receiver function is horizontal response, which eliminate multiple P wave reflection and retain direct wave and P-S converted waves, and is sensitive to the vertical variation of S wave velocity. Velocity structure beneath a seismic station has different response to radial and vertical component of an accident teleseismic P wave. To avoid the limits caused by a simplified assumption on the vertical response, the receiver function method is mended. In the frequency domain, the transfer function is showed by the ratio of radical response and vertical response of the media to P wave. In the time domain, the radial synthetic waveform can be obtained by the convolution of the transfer function with the vertical wave. In order to overcome the numerical instability, generalized reflection and transmission coefficient matrix method is applied to calculate the synthetic waveform so that all multi-reflection and phase conversion response can be included. A new inversion method, VFSA-LM method, is used in this study, which successfully combines very fast simulated annealing method (VFSA) with damped least square inversion method (LM). Synthetic waveform inversion test confirms its effectiveness and efficiency. Broadband teleseismic P waveform inversion is applied in lithospheric velocity study of China and its vicinage. According to the data of high quality CDSN and IRIS, we obtained an outline map showing the distribution of Asian continental crustal thickness. Based on these results gained, the features of distribution of the crustal thickness and outline of crustal structure under the Asian continent have been analyzed and studied. Finally, this paper advances the principal characteristics of the Asian continental crust. There exist four vast areas of relatively minor variations in the crustal thickness, namely, northern, eastern southern and central areas of Asian crust. As a byproduct, the earthquake location is discussed, Which is a basic issue in seismology. Because of the strong trade-off between the assumed initial time and focal depth and the nonlinear of the inversion problems, this issue is not settled at all. Aimed at the problem, a new earthquake location method named SAMS method is presented, In which, the objective function is the absolute value of the remnants of travel times together with the arrival times and use the Fast Simulated Annealing method is used to inverse. Applied in the Chi-Chi event relocation of Taiwan occurred on Sep 21, 2000, the results show that the SAMS method not only can reduce the effects of the trade-off between the initial time and focal depth, but can get better stability and resolving power. At the end of the paper, the inverse Q filtering method for compensating attenuation and frequency dispersion used in the seismic section of depth domain is discussed. According to the forward and inverse results of synthesized seismic records, our Q filtrating operator of the depth domain is consistent with the seismic laws in the absorbing media, which not only considers the effect of the media absorbing of the waves, but also fits the deformation laws, namely the frequency dispersion of the body wave. Two post stacked profiles about 60KM, a neritic area of China processed, the result shows that after the forward Q filtering of the depth domain, the wide of the wavelet of the middle and deep layers is compressed, the resolution and signal noise ratio are enhanced, and the primary sharp and energy distribution of the profile are retained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As the largest and highest plateau on the Earth, the Tibetan Plateau has been a key location for understanding the processes of mountain building and plateau formation during India-Asia continent-continent collision. As the front-end of the collision, the geological structure of eastern Tibetan Plateau is very complex. It is ideal as a natural laboratory for investigating the formation and evolution of the Tibetan Plateau. Institute of Geophysics, Chinese Academy of Sciences (CAS) carried out MT survey from XiaZayii to Qingshuihe in the east part of the plateau in 1998. After error analysis and distortion analysis, the Non-linear Conjugate Gradient inversion(NLCG), Rapid Relaxation Inversin (RRI) and 2D OCCAM Inversion algorithms were used to invert the data. The three models obtained from 3 algorithms provided similar electrical structure and the NLCG model fit the observed data better than the other two models. According to the analysis of skin depth, the exploration depth of MT in Tibet is much more shallow than in stable continent. For example, the Schmucker depth at period 100s is less than 50km in Tibet, but more than 100km in Canadian Shield. There is a high conductivity layer at the depth of several kilometers beneath middle Qiangtang terrane, and almost 30 kilometers beneath northern Qiangtang terrane. The sensitivity analysis of the data predicates that the depth and resistivity of the crustal high conductivity layer are reliable. The MT results provide a high conductivity layer at 20~40km depth, where the seismic data show a low velocity zone. The experiments show that the rock will dehydrate and partially melt in the relative temperature and pressure. Fluids originated from dehydration and partial melting will seriously change rheological characteristics of rock. Therefore, This layer with low velocity and high conductivity layer in the crust is a weak layer. There is a low velocity path at the depth of 90-110 km beneath southeastern Tibetan Plateau and adjacent areas from seismology results. The analysis on the temperature and rheological property of the lithosphere show that the low velocity path is also weak. GPS measurements and the numerical simulation of the crust-mantle deformation show that the movement rate is different for different terranes. The regional strike derived from decomposition analysis for different frequency band and seismic anisotropy indicate that the crust and upper mantle move separately instead of as a whole. There are material flow in the eastern and southeastern Tibetan Plateau. Therefore, the faults, the crustal and upper mantle weak layers are three different boundaries for relatively movement. Those results support the "two layer wedge plates" geodynamic model on Tibetan formation and evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the study of types, even temperature, the character of age-old fluid and fluid pressure of the reservoir fluid-inclusion in the Upper Paleozoic of Ordos Basin , combining with the diagenesis and character of gas geochemistry, reservoir sequence, cause of the low pressure reservoir formation and formation environment have been studied, the following knows are acquired: Abundant fluid-conclusions have developed in sandstone reservoir in Upper Paleozoic of Ordos Basin,and its kinds is numerous , also taking place some changes such as shrinking rock, cracking, stretching after formation. According to formation cause, fluid inclusion is divided into two types:successive and nonsuccessive inclusion. Nonsuccessive inclusion is further divided into brine inclusion, containing salt crystal inclusion, gaseity hydrocarbon conclusion and liquid hydrocarbon conclusion and so on. The gaseity hydrocarbon conclusion distributes at all the Basin, the liquid hydrocarbon conclusion mainly distributes at the East of Basin, and its two kinds of fluorescence color: blue and buff reflects at least two periods of oil filling and oil source of the different maturity. The study of diagenesis has indicated that five periods of diagenesis correspond to five periods inclusion's growth.The first and second period conclusions mainly distribute at the increasing margin of quartz, little amount and low even temperature, containing little gaseity hydrocarbon conclusion; The third and fourth conclusions are very rich, and having multiplicity forms, gaseity hydrocarbon conclusion of different facies, distributing at the increasing margin and crevice of quartz, its even temperature is between 85℃and 135℃;The fifth inclusion is relatively few ,mainly distributing at vein quartz and calcite, and developing few gaseity hydrocarbon conclusion. The fluid in the inclusion is mainly NaCl brine:low and high salinity brine fluid(containing salt crystal).The former salinity is between 0.18% and 18.55%,and mainly centralized distributing at three sectongs: from 0% to 4%, from 6% to 8%, from 10% to 14%, expressing that the alternation of the underground fluid was not intense, the conservation condition was good in different periods. The trapping pressure of the gaseity hydrocarbon conclusion calculated by PVTsim(V10)simulation is between 21.39 MPa and 42.58MPa,the average is 28.99MPa,mainlydistributes at between 24 MPa and 34MPa,and having a character of gradually lower from early to late time. The pressure of SuLiGe and WuShenQi dropped quickly in early time, and YuLin, ShenMu-MIZhi gas area dropped slowly in early and quickly in late time, ha portrait the change of trapping pressure can be divided into three old-age pressure systems: TaiYuan-ShanXi formation, low ShiHeZi formation and high ShiHeZi-ShiQianFeng formation. In plane, the trapping pressure dropped lowly from south to north in main reservoir period, and this reflects the gas migrating direction in the geohistory period. The analysis of gas component and monnmer hydrocarbon isotope indicates that the gas in Upper Paleozoic of Ordos Basin is coal-seam gas. The gas C_1-C_4 rnonnmer hydrocarbon isotopes has distinct differences in different stratums of different areas, and forming YuLin, SuLiGe and ShenMu-MIZhi three different distributing types. To sum up, gas reservoir combination in Upper Paleozoic of Ordos Basin can be divided into three sets of combination of reservoir formation: endogenesis type, near source type and farther source type,and near source gas combinations of reservoir formation is the main gas exploration area for its high gas filling intensity, large reservoir size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anduo area is located in the Central Tibet, the middle segment of the Bangonghu-Nujiang suture. Anduo Block is the northern part of Lhasa terrane. The relationships among the different geological bodies were determined during the 1: 250000 regional geological surveying. Petrography, petrologic geochemistry, isotopic geochemistry and geochronology of igneous rocks from the suture and granitoids from Anduo Block were analyzed systematically as a whole for the first time. Then, their tectonic setting and history are discussed.Anduo ophiolitic melange consists of metamorphic peridotites, cumulates, plagiogranites, sheeted dykes swarm, pillow lava and radiolarian cherts. The concentration of Cr and Ni in the metamorphic peridotites is very high, with Mg# about 0.94 ~ 0.97, higher 87Sr/86Sr and Pb isotopic ratios, and lower 143Nd/i44Nd ratio. LREE is enriched relative to HREE and positive Eu anomaly is very clear. The REE distribution curve is U shape. Nb and Ta anomalies from cumulate gabbro and sheeted dyke swarm are not clear, while that are slightly negative from pillow lava. Plagiogranite belongs to strong calc-alkaline series with high Si, middle Al, low Fe, Mg and low K contents. Eu anomaly (~ 1.23) from plagiogranites is slightly positive. The character of all components of ophiolite is similar to that of the MORB, while to some extent the ophiolite was influenced by crustal material. Anduo ophiolite formed in a mature back-arc basin. Additionally, intermediate acidity volcanic rocks within Anduo phiolite melange are island arc calc-alkline rocks related to ocean subduction.The early-middle Jurassic plutonic rocks are tonalite, granodiorite bearing-phenocryst, magaporphyritic hornblende monzogranite, magaporphyritic monzogranite, monzogranite bearing-phenocryst and syenogranite in turn. They belong to calc-alkaline series which developed from middle K to high K series temporally. REE distribution curves of all plutonic rocks are similar and parallel to each other. SREE and negative Eu anomaly values decrease. In the multi-element spider diagram, the curves of different plutons are similar to each other, but troughs of Nb, Sr, P and Ti from young plutons become more evident. This suggests that thereare some closely petrogenetic affinities among plutonic rocks which make up amagma plutonism cycle of the early-middle Jurassic. Magma source is mainly crustal,but abundant mafic microgranular enclaves within granitoids indicate that crastalmagma should be mixed with mantle-derived magma and the mantle-derived magmadecreased subsequently. Tonalite has features of I-type granite, magaporphyriticmonzogranite is transition type, and monzogranite bearing-phenocryst is S-typegranite. The characteristic of granitoids from Anduo Block suggest that the formingtectonic setting is active continental margin.Reliable zircon U-Pb SHRIMP ages are obtained in the study area firstly. Plagiogranite from the Anduo ophiolite of the Bangonghu-Nujiang suture is 175.1 Ma, and granitoids from Anduo Block is 172.6-185.4 Ma. Additionally, plagioclase from the plagiogranite dates a 40Ar/39Ar age of 144 Ma, while biotite and hornblend from granitoids of Anduo Block give a 163-165 Ma.Similar cooling ages of plagiogranite from the Anduo ophiolitic melange and granitoids from Anduo Block and the spatial distribution of the ophiolitic rocks between Anduo, Naqu, and Shainzha area suggest that bilateral subduction of the Bangonghu-Nujiang oceanic basin took place in the early-middle Jurassic. During this subduction, Anduo ophiolitic rocks were related to north subduction of the Bangonghu-Nujiang oceanic basin and Anduo back-arc basin spreading, while granitoids from Anduo Block were related to south subduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

East China Sea Shelf Basin (ECSSB), as a basin with prospect of oil & gas resource and due to its special geological location on the west margin of the west Pacific, attracts a lot of attention from many geologists in the world.Based on systematic temperature measurements, bottom hole temperature (BHT) and the oil temperature data, the geothermal gradients in the ECS SB are calculated and vary from 25 to 43°C/km, with a mean of 32.7°C/km. The geothermal gradient in Fuzhou Sag has the higher value(40.6°C/km) in Taibei Depression than that in others. The lower value (27.2 °C/km) occurs in in Xihu Depression. The middle values occurs in Jiaojiang and Lishui sags in Taibei Depression with a mean value of 34.8 °C/km. Incorporated with the measured thermal conductivity, heat flow values show that the ECSSB is characterized by present-day heat flow around 70.6mW/m2, varying between 55 and 88 mW/m2. No significant difference in heat flow is observed between the Xihu and the Taibei Depressions. These heat flow data suggest that the ECSSB is geothermally not a modem back-arc basin.Applying the paleogeothermal gradient based method, thermal history is reconstructed using vitrinite reflectance (VR) and apatite fission track (AFT) data. The results suggest that the thermal history was different in the Taibei and the Xihu depressions. Paleo-heat flow values when the pre-Tertiary formations experienced their maximum temperature at the end of the Paleocene reached a mean of 81 mW/m2 in the Taibei Depression, much higher than the present-day value. The lower Tertiary sediments in the Xihu Depression experienced maximum temperatures at the end of Oligocene and reached a mean paleo-heat flow value of 83.4 mW/m2. The time, when the paleo-heat flow reached the maximum value, suggests that the ECSSB rifted eastward.Tectonic subsidence analysis shows that the timing of the major rifting episode was different across the ECSSB. The rifting occurred from the Late Cretaceous to the early Eocene in the Taibei Depression, followed by thermal subsidence from the late Eocene to the end of Miocene. In contrast, in the Xihu Depression the initial subsidence lasted until the early Miocene and thermal subsidence to the end of Miocene. From Pliocene to the present, an accelerated subsidence took place all along the West Pacific margin of the east Asia.The thermal lithosphere thickness is determined by temperature profile in the lithosphere, the mantle adiabat or the dry basalt solidus. It indicates that the thermal lithosphere reached the thinnest thickness at the end of Eocene in the Taibei Depression and the end of Oligocene in the Xihu Depression, respectively, corresponding with a value of 57-66km and 56-64km. In Taibei Depression, the lithosphere thickness decreased 16-22km from the end of Mesozoic to Paleocene. After Paleocene, the thickness increased 13-16km and reached 71-79 km at present-day. In Xihu Depression, From the end of Oligocene to present-day, the thickness increased 10-13km and reached 69-76km at present-day. The evolution of the lithosphere thickness is associated closely with the lithosphere stretching.Combining the reconstructed thermal history and the burial history, the maturation of the Jurassic oil-source rock shows that the main hydrocarbon generation phase was in the mid-Jurassic and a secondary hydrocarbon generation occurred at the end of Paleocene. The secondary generation was controlled mainly by the tectono-thermal background during the Paleocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been a difficult problem faced by seismologists for long time that how exactly to reconstruct the earth's geometric structure and distribution of physical attributes according to seismic wave's kinematical and dynamic characteristics, obtained in seismological observation. The jointing imaging of seismic reflector and anisotropy attributes in the earth interior is becoming the research hot spot. The limitation of shoot and observation system makes that the obtained seismic data are too scarce to exactly reconstruct the geological objects. It is popular that utilizing only seismic reflection traveltimes or polarizations information make inversion of the earth's velocity distribution by fixing seismic reflector configuration (vice versa), these will lead to the serious non-uniqueness reconstruction due to short of effective data, the non-uniqueness problem of reconstructing anisotropy attributes will be more serious than in isotropy media. Obviously it is not enough to restrict the media structure only by information of seismic reflection traveltimes or polarizations, which even sometimes will lead to distorted images and misinterpretation of subsurface structure. So we try to rebuild seismic reflection structure (geometry) and media anisotropic structure (physics) in the earth interior by jointing data of seismic wave kinematics and dynamics characteristics, we carry out the new experiment step by step, and the research mainly comprises of two parts: one is the reconstruction of P-wave vertical velocity and anisotropic structure(Thomsen parameter s and 8) in the transversely isotropic media with vertical symmetrical axis(VTI) by fixing geometrical structure, and the other is the simultaneous inversion of the reflector surface conformation and seismic anisotropic structure by jointing seismic reflection traveltimes and polarizations data. Simulated annealing method is used to the first research part, linear inversion based on BG theory and Simulated annealing are applied to the second one. All the research methods are checked by model experiments, then applied to the real data of the wide-angle seismic profile from Tunxi, Anhui Province, to Wenzhou, Zhejiang Province. The results are as following The inversion results based on jointing seismic PP-wave or PSV-wavereflection traveltimes and polarizations data are more close to real model than themodels based simply on one of the two data respectively. It is shown that the methodwe present here can effectively reconstruct the anisotropy attributes in the earth'sinterior when seismic reflector structure is fixed.The layer thickness, P-wave vertical velocity and Thomsen anisotropicparameters {s and 8) could be resolved simultaneously by jointing inversion ofseismic reflection traveltimes and polarizations with the linear inversion methodbased on BG theory.The image of the reflector structure, P-wave vertical velocity and theanisotropy parameters in the crust could be obtained from the wide-angle seismicprofile from Tunxi (in Anhui Province), to Wenzhou (in Zhejiang Province). Theresults reveal the difference of the reflector geometrical structure and physicalattributes in the crust between Yangtze block and Cathaysia block, and attempt tounderstand the characteristics of the crustal stress field in the areas.