青藏高原壳幔形变与层圈耦合数值模拟
Contribuinte(s) |
张中杰 |
---|---|
Data(s) |
2002
|
Resumo |
Based on multi-principle (such as structures, tectonics and kinematics) exploratory data and related results of continental dynamics in the Tibetan plateau, the author reconstructed the geological-geophysical model of lithospherical structure and tectonic deformation, and the kinetics boundary conditions for the model. Then, the author used the numerical scheme of Fast Lagrangian Analysis of Continua (FLAC), to stimulate the possible process of the stress field and deformational field in the Tibetan plateau and its adjacent area, since the convergence-collision between the Indian continent and Eurasia continent about 50Ma ago. With the above-mentioned results, the author discussed the relationship between crustal movement in shallow layer and the deformational process in interior layers, and its possible dynamic constraints in deep. At the end of the paper, an integrative model has been put forward to explain the outline images of crust-mantle deformation and coupling in the Tibetan Plateau. (1) The characteristics of crust-mantle structure of the Tibetan plateau have been shown to be very complex, and vertical and horizontal difference is significant. The general characteristics of crust-mantle of the Tibetan plateau may be that it's layering in depth direction, and shows blocking from south to north and belting from east to west, mainly according to the results of about 20 seismic sections, such as wide-angle seismic profiles, CMP, seismic tomography and so on. (2) The crust had shortened about 2200km, while the shortening is different for different block from south to north in the Tibetan plateau. It is about 11.5mm/a in Himalayan block, about 9.0mm/a in Lhas-Gangdese block, about 7.0mm/a in Qiangtang block and Songpan-Ganzi-Kekexili block, about 8.0mm/a in Kunlun-Qaidam, and about ll.Omm/a in Qilian block, since the convergence-collision between the Indian continent and Eurasia continent about 50Ma ago. Which - in demonstrates the shortening rate decreases from south to north, but this rate increases near the north edge of the Tibetan plateau. The crust thickening rate is about 0.4mm/a in the whole Tibetan plateau; and this rate is about 0.5mm/a in Himalayan block, about 0.4mm/a in Lhas-Gangdese block, about 0.3mm/a in Qiangtang block, about 0.2mm/a in Songpan-Ganzi-Kekexili block and about O.lmm/a in Kunlun-Qaidam-Qilian block, since the convergence-collision between the Indian continent and Eurasia continent about 50Ma ago. This implies that the thickening rate decreases in the blocks of the Tibetan plateau. From south to north, the displacement of eastern boundary in the Tibetan plateau is about 37mm/a in Himalayan block, about 45mm/a in Lhas-Gangdese block, about 47mm/a in Qiangtang block, about 43mm/a in Songpan-Ganzi-Kekexili block, and about 35mm/a in Kunlun-Qaidam-Qilian block, since the collision-matching between the Indian continent and Eurasia continent had happened about 50Ma ago. This implies that the rate of eastward displacement is biggest in the middle of plateau, and decreases to both sides. The transition of S-N compression stress field in Tibetan Plateau, since about 28Ma+ ago, may be caused by two reasons: On one hand, the movement direction of Eurasia continent changed from northward to southward about 28Ma± ago in the northern plateau. On the other hand, the front belt that is located between India continent's and Eurasia continent's convergence-collision, had moved southward to high Himalayan from Indus-Brahmaputra suture almost at the same time in southern plateau. Affected by the stress field, the earlier tectonics rotated clockwise, NE and NW conjugate strike-slip faults developed, and the SN rift formed. This indicated that the EW movement started. The ratio between upper crust and lower crust of different blocks from south to north in the Tibetan plateau during the process of deformation are as following: about 3.5~5:1 in Himalayan block, about 1~5: 3-4 (which is about 1:3o--4 in south and about 4~5:3 in north) in Lhas-Gangdese block, about 1:3~447mm/a in these blocks: Which is located to the north of Banggong-nujiang suture. |
Identificador | |
Idioma(s) |
中文 |
Fonte |
青藏高原壳幔形变与层圈耦合数值模拟.杨立强[d].中国科学院地质与地球物理研究所,2002.20-25 |
Palavras-Chave | #青藏高原 #层块结构 #壳幔形变 #层圈耦合 #数值模拟 |
Tipo |
学位论文 |