917 resultados para Transplantation heterologous


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eukaryotic cells are characterized by having a subset of internal membrane compartments, each one with a specifi c identity, structure and function. Proteins destined to be targeted to the exterior of the cell need to enter and progress through the secretory pathway. Transport of secretory proteins from the endoplasmic reticulum (ER) to the Golgi takes place by the selective packaging of proteins into COPII-coated vesicles at the ER membrane. Taking advantage of the extensive genetic tools available for S. cerevisiae we found that Hsp150, a yeast secretory glycoprotein, selectively exited the ER in the absence of any of the three Sec24p family members. Sec24p has been thought to be an essential component of the COPII coat and thus indispensable for exocytic membrane traffic. Next we analyzed the ability of Hsp150 to be secreted in mutants, where post-Golgi transport is temperature sensitive. We found that Hsp150 could be selectively secreted under conditions where the exocyst component Sec15p is defective. Analysis of the secretory vesicles revealed that Hsp150 was packaged into a subset of known secretory vesicles as well as in a novel pool of secretory vesicles at the level of the Golgi. Secretion of Hsp150 in the absence of Sec15p function was dependent of Mso1p, a protein capable of interacting with vesicles intended to fuse with the plasma membrane, with the SNARE machinery and with Sec1p. This work demonstrated that Hsp150 is capable of using alternative secretory pathways in ER-to-Golgi and Golgi-to-plasma membrane traffi c. The sorting signals, used at both stages of the secretory pathway, for secretion of Hsp150 were different, revealing the highly dynamic nature and spatial organization of the secretory pathway. Foreign proteins usually misfold in the yeast ER. We used Hsp150 as a carrier to assist folding and transport of heterologous proteins though the secretory pathway to the culture medium in both S. cerevisiae and P. pastoris. Using this technique we expressed Hsp150Δ-HRP and developed a staining procedure, which allowed the visualization of the organelles of the secretory pathway of S. cerevisiae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study analyses the traffic of Hsp150 fusion proteins through the endoplasmic reticulum (ER) of yeast cells, from their post-translational translocation and folding to their exit from the ER via a selective COPI-independent pathway. The reporter proteins used in the present work are: Hsp150p, an O-glycosylated natural secretory protein of Saccharomyces cerevisiae, as well as fusion proteins consisting of a fragment of Hsp150 that facilitates in the yeast ER proper folding of heterologous proteins fused to it. It is thought that newly synthesized polypeptides are kept in an unfolded form by cytosolic chaperones to facilitate the post-translational translocation across the ER membrane. However, beta-lactamase, fused to the Hsp150 fragment, folds in the cytosol into bioactive conformation. Irreversible binding of benzylpenicillin locked beta-lactamase into a globular conformation, and prevented the translocation of the fusion protein. This indicates that under normal conditions the beta-lactamase portion unfolds for translocation. Cytosolic machinery must be responsible for the unfolding. The unfolding is a prerequisite for translocation through the Sec61 channel into the lumen of the ER, where the polypeptide is again folded into a bioactive and secretion-competent conformation. Lhs1p is a member of the Hsp70 family, which functions in the conformational repair of misfolded proteins in the yeast ER. It contains Hsp70 motifs, thus it has been thought to be an ATPase, like other Hsp70 members. In order to understand its activity, authentic Lhs1p and its recombinant forms expressed in E. coli, were purified. However, no ATPase activity of Lhs1p could be detected. Nor could physical interaction between Lhs1p and activators of the ER Hsp70 chaperone Kar2p, such as the J-domain proteins Sec63p, Scj1p, and Jem1p and the nucleotide exchange factor Sil1p, be demonstrated. The domain structure of Lhs1p was modelled, and found to consist of an ATPase-like domain, a domain resembling the peptide-binding domain (PBD) of Hsp70 proteins, and a C-terminal extension. Crosslinking experiments showed that Lhs1p and Kar2p interact. The interacting domains were the C-terminal extension of Lhs1p and the ATPase domain of Kar2p, and this interaction was independent of ATPase activity of Kar2p. A model is presented where the C-terminal part of Lhs1p forms a Bag-like 3 helices bundle that might serve in the nucleotide exchange function for Kar2p in translocation and folding of secretory proteins in the ER. Exit of secretory proteins in COPII-coated vesicles is believed to be dependent of retrograde transport from the Golgi to the ER in COPI-coated vesicles. It is thought that receptors escaping to the Golgi must be recycled back to the ER exit sites to recruit cargo proteins. We found that Hsp150 leaves the ER even in the absence of functional COPI-traffic from the Golgi to the ER. Thus, an alternative, COPI-independent ER exit pathway must exists, and Hsp150 is recruited to this route. The region containing the signature guiding Hsp150 to this alternative pathway was mapped.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vuodenajat rytmittävät monivuotisten kasvien elämää pohjoisella pallonpuoliskolla, jolla varmin merkki lähestyvästä talvikaudesta on asteittain lyhenevä päivänpituus. Kun päivänpituus on lyhentynyt tiettyyn raja-arvoon saakka, kasvu hiipuu ja kasvin kehityksessä tapahtuu suuria muutoksia. Väitöskirjatyössäni tutkittiin mekanismeja, jotka liittyvät pituuskasvun päättymiseen, silmujen lepotilan kehittymiseen ja kärkisilmun muodostumiseen hybridihaavan ja koivuntaimilla lyhyen päivänpituuden seurauksena kasvihuoneolosuhteissa. Vain lepotilaiset silmut selviytyvät luonnossa ankaran talvikauden yli, joten etenkin lepotilan kehittymisen tutkiminen on keskeistä pyrittäessä selvittämään monivuotisille kasveille tyypillisen kasvutavan mekanismeja. Jo pitkään on tiedetty, että täysikasvuiset lehdet vastaanottavat tiedon päivänpituudesta ja lähettävät signaaleja varren johtojänteissä ylöspäin kohti kasvin kärkiosaa. Sen sijaan varren kärjen ja kärkikasvupisteen roolia lepotilan kehittymisessä on selvitetty vain vähän. Kuitenkin juuri kärkikasvupisteen selviytyminen vuodesta toiseen on tärkeää, koska sen jakautumiskykyiset solukot tuottavat kasvin maanpäälliset osat. Tässä työssä tehdyissä varttamiskokeissa osoitettiin, että varren kärki ei ainoastaan vastaanota signaaleja lehdistä ja ajoita toimintaansa niiden mukaan, vaan myös kärjellä itsellään on aktiivinen rooli lepotilan kehittymisessä. Erityisesti kiinnitettiin huomiota kärkikasvupisteen eri alueiden, ns. apikaalimeristeemin ja rib-meristeemin erilaisiin tehtäviin ja pääteltiin, että molemmat vaikuttavat lepotilan kehittymiseen. Kokeissa käytettiin normaalien hybridihaapojen lisäksi siirtogeenisiä hybridihaapoja, jotka eivät lopeta kasvuaan lyhyt päivä –olosuhteissa. Siirtogeeniset hybridihaavat ilmensivät voimakkaasti fytokromi A -nimistä valon vastaanottajamolekyyliä rib-meristeemin alueella, mikä saattoi osaltaan vaikuttaa poikkeavaan pituuskasvukäyttäytymiseen. Myös useiden lepotilan kehittymiseen liittyvien geenien ilmenemisessä havaittiin poikkeavuuksia verrattuna ei-siirtogeenisiin kontrolleihin, joiden silmuissa kehittyi lepotila lyhyt päivä –altistuksen seurauksena. Väitöskirjatyössäni havaittiin, että myös kaasumainen kasvihormoni etyleeni toimii viestinvälittäjänä silmujen lepotilan kehittymisessä ja vaikuttaa etenkin lepotilan oikeaan ajoittumiseen. Etyleenillä huomattiin olevan määräävä rooli päätesilmun muodostumisessa: siirtogeeniset koivut, jotka eivät aisti etyleeniä, eivät muodostaneet päätesilmua. Silti siirtogeeniset koivut vaipuivat lepotilaan, joskin myöhemmin kuin ei-siirtogeeniset kontrollit. Tämän perusteella todettiin, että lepotilan ja päätesilmun kehittyminen ovat erillisiä kehitystapahtumia, vaikka ne saattavatkin ajoittua osaksi päällekkäin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lignin is a complex plant polymer synthesized through co-operation of multiple intracellular and extracellular enzymes. It is deposited to plant cell walls in cells where additional strength or stiffness are needed, such as in tracheary elements (TEs) in xylem, supporting sclerenchymal tissues and at the sites of wounding. Class III peroxidases (POXs) are secreted plant oxidoreductases with implications in many physiological processes such as the polymerization of lignin and suberin and auxin catabolism. POXs are able to oxidize various substrates in the presence of hydrogen peroxide, including lignin monomers, monolignols, thus enabling the monolignol polymerization to lignin by radical coupling. Trees produce large amounts of lignin in secondary xylem of stems, branches and roots. In this study, POXs of gymnosperm and angiosperm trees were studied in order to find POXs which are able to participate in lignin polymerization in developing secondary xylem i.e. are located at the site of lignin synthesis in tree stems and have the ability to oxidize monolignol substrates. Both in the gymnosperm species, Norway spruce and Scots pine, and in the angiosperm species silver birch the monolignol oxidizing POX activities originating from multiple POX isoforms were present in lignifying secondary xylem in stems during the period of annual growth. Most of the partially purified POXs from Norway spruce and silver birch xylem had highest oxidation rate with coniferyl alcohol, the main monomer in guaiacyl-lignin in conifers. The only exception was the most anionic POX fraction from silver birch, which clearly preferred sinapyl alcohol, the lignin monomer needed in the synthesis of syringyl-guaiacyl lignin in angiosperm trees. Three full-length pox cDNAs px1, px2 and px3 were cloned from the developing xylem of Norway spruce. It was shown that px1 and px2 are expressed in developing tracheids in spruce seedlings, whereas px3 transcripts were not detected suggesting low transcription level in young trees. The amino acid sequences of PX1, PX2 and PX3 were less than 60% identical to each other but showed up to 84% identity to other known POXs. They all begin with predicted N-terminal secretion signal (SS) peptides. PX2 and PX3 contained additional putative vacuolar localization determinants (VSDs) at C-terminus. Transient expression of EGFP-fusions of the SS- and VSD-peptides in tobacco protoplasts showed SS-peptides directed EGFP to secretion in tobacco cells, whereas only the PX2 C-terminal peptide seems to be a functional VSD. According to heterologous expression of px1 in Catharanthus roseus hairy roots, PX1 is a guaicol-oxidizing POX with isoelectric point (pI) approximately 10, similar to monolignol oxidizing POXs in protein extracts from Norway spruce lignifying xylem. Hence, PX1 has characteristics for participation to monolignol dehydrogenation in lignin synthesis, whereas the other two spruce POXs seem to have some other functions. Interesting topics in future include functional characterization of syringyl compound oxidizing POXs and components of POX activity regulation in trees.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diversity of functions of eukaryotic cells is preserved by enclosing different enzymatic activities into membrane-bound organelles. Separation of exocytic proteins from those which remain in the endoplasmic reticulum (ER) casts the foundation for correct compartmentalization. The secretory pathway, starting from the ER membrane, operates by the aid of cytosolic coat proteins (COPs). In anterograde transport, polymerization of the COPII coat on the ER membrane is essential for the ER exit of proteins. Polymerization of the COPI coatomer on the cis-Golgi membrane functions for the retrieval of proteins from the Golgi for repeated use in the ER. The COPII coat is formed by essential proteins; Sec13/31p and Sec23/24p have been thought to be indispensable for the ER exit of all exocytic proteins. However, we found that functional Sec13p was not required for the ER exit of yeast endogenous glycoprotein Hsp150 in the yeast Saccharomyces cerevisiae. Hsp150 turned out to be an ATP phosphatase. ATP hydrolysis by a Walker motif located in the C-terminal domain of Hsp150 was an active mediator for the Sec13p and Sec24p independent ER exit. Our results suggest that in yeast cells a fast track transport route operates in parallel with the previously described cisternal maturation route of the Golgi. The fast track is used by Hsp150 with the aid of its C-terminal ATPase activity at the ER-exit. Hsp150 is matured with a half time of less than one minute. The cisternal maturation track is several-fold slower and used by other exocytic proteins studied so far. Operative COPI coat is needed for ER exit by a subset of proteins but not by Hsp150. We located a second active determinant to the Hsp150 polypeptide s N-terminal portion that guided also heterologous fusion proteins out of the ER in COPII coated vesicles under non-functional COPI conditions for several hours. Our data indicate that ER exit is a selective, receptor-mediated event, not a bulk flow. Furthermore, it suggests the existence of another retrieval pathway for essential reusable components, besides the COPI-operated retrotransport route. Additional experiments suggest that activation of the COPI primer, ADP ribosylation factor (ARF), is essential also for Hsp150 transport. Moreover, it seemed that a subset of proteins directly needed activated ARF in the anterograde transport to complete the ER exit. Our results indicate that coat structures and transport routes are more variable than it has been imagined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Identification of epitopes by modification studies has been reported by us recently. The method requires milligram quantities of antigen and since several proteins are not available in large quantities they are not amenable for such an investigation. One such protein is human follicle stimulating hormone (hFSH) whose mapping of epitopes is of importance in reproductive biology. Here we report a method that uses microgram quantities of hFSH to map a beta-specific epitope located at the receptor binding region. This identification has also been validated by the chemical modification method using heterologous antigen ovine follicle stimulating hormone (oFSH).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report here that a protein species with biochemical and immunological similarity with chicken egg riboflavin carrier protein (RCP) is synthesized and secreted by immature rat Sertoli cells in culture. When quantitated by a specific heterologous radioimmunoassay, optimal concentrations of FSH (25 ng/ml) brought about 3-fold stimulation of RCP secretion. FSH, in the presence of testosterone (10−6 M) brought about 6-fold stimulation of secretion of RCP over the control cultures which were maintained in the absence of these two factors. The aromatase inhibitor (1,4,6-androstatrien-3,17-dione) curtailed 85% of the enhanced secretion of RCP, suggesting that the hormonal stimulation is mediated through in situ synthesized estrogen and this could be confirmed with exogenous estradiol-17 β which brought about 3 — fold enhancement of secretion of RCP at a concentration of 10−6 M. When tamoxifen (10 μM) was added along with FSH and testosterone, there was 75% decrease in the enhanced secretion of RCP. Addition of this anti-estrogen together with exogenous estradiol resulted in 55% decrease in elevated levels of RCP. Cholera toxin (1 μg/ml) and 8-bromo-cyclic AMP (0.5 mM) mimicked the action of FSH on the secretion of RCP thus suggesting that FSH stimulation of RCP production may be mediated through cyclic AMP. These findings suggest that estrogen mediates RCP induction in hormonally stimulated sertoli cells presumably to function as the carrier of riboflavin to the developing germ cells through blood-testis barrier in rodents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitrate assimilation in many plants, algae, yeasts and bacteria is mediated by two enzymes, nitrate reductase (EC 1.6.6.2) and nitrite reductase (EC 1.7.7.1). They catalyse the stepwise reduction of nitrate to nitrite and nitrite to ammonia respectively. The nitrite reductase from an industrially important yeast, Candida utilis, has been purified to homogeneity. Purified nitrite reductase is a heterodimer and the molecular masses of the two subunits are 58 and 66 kDa. The native enzyme exhibits a molecular mass of 126 kDa as analysed by gel filtration. The identify of the two subunits of nitrite reductase was confirmed by immunoblotting using antibody for Cucurbita pepo leaf nitrite reductase. The presence of two different sized transcripts coding for the two subunits was confirmed by (a) in vitro translation of mRNA from nitrate-induced C. utilis followed by immunoprecipitation of the in vitro translated products with heterologous nitrite reductase antibody and (b) Northern-blot analysis. The 66 kDa subunit is acidic in nature which is probably due to its phosphorylated status. The enzyme is stable over a range of temperatures. Both subunits can catalyse nitrite reduction, and the reconstituted enzyme, at a higher protein concentration, shows an activity similar to that of the purified enzyme. Each of these subunits has been shown to contain a few unique peptides in addition to a large number of common peptides. Reduced Methyl Viologen has been found to be as effective an electron donor as NADPH in the catalytic process, a phenomenon not commonly seen for nitrite reductases from other systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pectin is a natural polymer consisting mainly of D-galacturonic acid monomers. Microorganisms living on decaying plant material can use D-galacturonic acid for growth. Although bacterial pathways for D-galacturonate catabolism had been described previously, no eukaryotic pathway for D-galacturonate catabolism was known at the beginning of this work. The aim of this work was to identify such a pathway. In this thesis the pathway for D-galacturonate catabolism was identified in the filamentous fungus Trichoderma reesei. The pathway consisted of four enzymes: NADPH-dependent D-galacturonate reductase (GAR1), L-galactonate dehydratase (LGD1), L-threo-3-deoxy-hexulosonate aldolase (LGA1) and NADPH-dependent glyceraldehyde reductase (GLD1). In this pathway D-galacturonate was converted to pyruvate and glycerol via L-galactonate, L-threo-3-deoxy-hexulosonate and L-glyceraldehyde. The enzyme activities of GAR1, LGD1 and LGA1 were present in crude mycelial extract only when T. reesei was grown on D-galacturonate. The activity of GLD1 was equally present on all the tested carbon sources. The corresponding genes were identified either by purifying and sequencing the enzyme or by expressing genes with homology to other similar enzymes in a heterologous host and testing the activities. The new genes that were identified were expressed in Saccharomyces cerevisiae and resulted in active enzymes. The GAR1, LGA1 and GLD1 were also produced in S. cerevisiae as active enzymes with a polyhistidine-tag, and purified and characterised. GAR1 and LGA1 catalysed reversible reactions, whereas only the forward reactions were observed for LGD1 and GLD1. When gar1, lgd1 or lga1 was deleted in T. reesei the deletion strain was unable to grow with D-galacturonate as the only carbon source, demonstrating that all the corresponding enzymes were essential for D-galacturonate catabolism and that no alternative D-galacturonate pathway exists in T. reesei. A challenge for biotechnology is to convert cheap raw materials to useful and more valuable products. Filamentous fungi are especially useful for the conversion of pectin, since they are efficient producers of pectinases. Identification of the fungal D-galacturonate pathway is of fundamental importance for the utilisation of pectin and its conversion to useful products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Keratinocytes expressing tumor or viral antigens can be eliminated by antigen-primed CD8 cytotoxic T cells. CD4 T-helper cells help induction of CD8 cytotoxic T cells from naive precursors and generation of CD8 T-cell memory. In this study, we show, unexpectedly, that CD4 cells are also required to assist primed CD8 effector T cells in rejection of skin expressing human growth hormone, a neo-self-antigen, in keratinocytes. The requirement for CD4 cells can be substituted by CD40 costimulation. Rejection of skin expressing ovalbumin (OVA), a non-self-antigen, by primed CD8 cytotoxic T cells can in contrast occur without help from antigen-specific CD4 T cells. However, rejection of OVA expressing keratinocytes is helped by antigen-specific CD4 T cells if only low numbers of primed or naive OVA-specific CD8 T cells are available. Effective immunotherapy directed at antigens expressed in squamous cancer may therefore be facilitated by induction of tumor antigen-specific CD4 helper T cells, as well as cytotoxic CD8 T cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adoptive T cell therapy uses the specificity of the adaptive immune system to target cancer and virally infected cells. Yet the mechanism and means by which to enhance T cell function are incompletely described, especially in the skin. In this study, we use a murine model of immunotherapy to optimize cell-mediated immunity in the skin. We show that in vitro - derived central but not effector memory-like T cells bring about rapid regression of skin-expressing cognate Ag as a transgene in keratinocytes. Local inflammation induced by the TLR7 receptor agonist imiquimod subtly yet reproducibly decreases time to skin graft rejection elicited by central but not effector memory T cells in an immunodeficient mouse model. Local CCL4, a chemokine liberated by TLR7 agonism, similarly enhances central memory T cell function. In this model, IL-2 facilitates the development in vivo of effector function from central memory but not effector memory T cells. In a model of T cell tolerogenesis, we further show that adoptively transferred central but not effector memory T cells can give rise to successful cutaneous immunity, which is dependent on a local inflammatory cue in the target tissue at the time of adoptive T cell transfer. Thus, adoptive T cell therapy efficacy can be enhanced if CD8+ T cells with a central memory T cell phenotype are transferred, and IL-2 is present with contemporaneous local inflammation. Copyright © 2012 by The American Association of Immunologists, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New blood cells are continuously provided by self-renewing multipotent hematopoietic stem cells (HSC). The capacity of HSCs to regenerate the hematopoietic system is utilized in the treatment of patients with hematological malignancies. HSCs can be enriched using an antibody-based recognition of CD34 or CD133 glycoproteins on the cell surface. The CD133+ and CD34+ cells may have partly different roles in hematopoiesis. Furthermore, each cell has a glycome typical for that cell type. Knowledge of HSC glycobiology can be used to design therapeutic cells with improved cell proliferation or homing properties. The present studies characterize the global gene expression profile of human cord blood-derived CD133+ and CD34+ cells, and demonstrate the differences between CD133+ and CD34+ cell populations that may have an impact in transplantation when CD133+ and CD34+ selected cells are used. In addition, these studies unravel the glycome profile of primitive hematopoietic cells and reveal the transcriptional regulation of N-glycan biosynthesis in CD133+ and CD34+ cells. The gene expression profile of CD133+ cells represents 690 differentially expressed transcripts between CD133+ cells and CD133- cells. CD34+ cells have 620 transcripts differentially expressed when compared to CD34- cells. The integrated CD133+/CD34+ cell gene expression profiles proffer novel transcripts to specify HSCs. Furthermore, the differences between the gene expression profiles of CD133+ and CD34+ cells indicate differences in the transcriptional regulation of CD133+ and CD34+ cells. CD133+ cells express a lower number of hematopoietic lineage differentiation marker genes than CD34+ cells. The expression profiles suggest a more primitive nature of CD133+ cells. Moreover, CD133+ cells have characteristic glycome that differ from the glycome of CD133- cells. High mannose-type and biantennary complex-type N-glycans are enriched in CD133+ cells. N-glycosylation-related gene expression pattern of CD133+ cells identify the key genes regulating the CD133+ cell-specific glycosylation including the overexpression of MGAT2 and underexpression of MGAT4. The putative role of MAN1C1 in the increase of unprocessed high mannose-type N-glycans in CD133+ cells is also discussed. These studies provide new information on the characteristics of HSCs. Improved understanding of HSC biology can be used to design therapeutic cells with improved cell proliferation and homing properties. As a result, HSC engineering could further their clinical use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In most non-mammalian vertebrates, such as fish and reptiles, teeth are replaced continuously. However, tooth replacement in most mammals, including human, takes place only once and further renewal is apparently inhibited. It is not known how tooth replacement is genetically regulated, and little is known on the physiological mechanism and evolutionary reduction of tooth replacement in mammals. In this study I have attempted to address these questions. In a rare human condition cleidocranial dysplasia, caused by a mutation in a Runt domain transcription factor Runx2, tooth replacement is continued. Runx2 mutant mice were used to investigate the molecular mechanisms of Runx2 function. Microarray analysis from dissected embryonic day 14 Runx2 mutant and wild type dental mesenchymes revealed many downstream targets of Runx2, which were validated using in situ hybridization and tissue culture methods. Wnt signaling inhibitor Dkk1 was identified as a candidate target, and in tissue culture conditions it was shown that Dkk1 is induced by FGF4 and this induction is Runx2 dependent. These experiments demonstrated a connection between Runx2, FGF and Wnt signaling in tooth development and possibly also in tooth replacement. The role of Wnt signaling in tooth replacement was further investigated by using a transgenic mouse model where Wnt signaling mediator β-catenin is continuously stabilized in dental epithelium. This stabilization led to activated Wnt signaling and to the formation of multiple enamel knots. In vitro and transplantation experiments were performed to examine the process of extra tooth formation. We showed that new teeth were continuously generated and that new teeth form from pre-existing teeth. A morphodynamic activator-inhibitor model was used to simulate enamel knot formation. By increasing the intrinsic production rate of the activator (β-catenin), the multiple enamel knot phenotype was reproduced by computer simulations. It was thus concluded that β-catenin acts as an upstream activator of enamel knots, closely linking Wnt signaling to the regulation of tooth renewal. As mice do not normally replace teeth, we used other model animals to investigate the physiological and genetic mechanisms of tooth replacement. Sorex araneus, the common shrew was earlier reported to have non-functional tooth replacement in all antemolar tooth positions. We showed by histological and gene expression studies that there is tooth replacement only in one position, the premolar 4 and that the deciduous tooth is diminished in size and disappears during embryogenesis without becoming functional. The growth rates of deciduous and permanent premolar 4 were measured and it was shown by competence inference that the early initiation of the replacement tooth in relation to the developmental stage of the deciduous tooth led to the inhibition of deciduous tooth morphogenesis. It was concluded that the evolutionary loss of deciduous teeth may involve the early activation of replacement teeth, which in turn suppress their predecessors. Mustela putorius furo, the ferret, has a dentition that resembles that of the human as ferrets have teeth that belong to all four tooth families, and all the antemolar teeth are replaced once. To investigate the replacement mechanism, histological serial sections from different embryonic stages were analyzed. It was noticed that tooth replacement is a process which involves the growth and detachment of the dental lamina from the lingual cervical loop of the deciduous tooth. Detachment of the deciduous tooth leads to a free successional dental lamina, which grows deeper into the mesenchyme, and later buds the replacement tooth. A careful 3D analysis of serial histological sections was performed and it was shown that replacement teeth are initiated from the successional dental lamina and not from the epithelium of the deciduous tooth. The molecular regulation of tooth replacement was studied and it was shown by examination of expression patterns of candidate regulatory genes that BMP/Wnt inhibitor Sostdc1 was strongly expressed in the buccal aspect of the dental lamina, and in the intersection between the detaching deciduous tooth and the successional dental lamina, suggesting a role for Sostdc1 in the process of detachment. Shh was expressed in the enamel knot and in the inner enamel epithelium in both generations of teeth supporting the view that the morphogenesis of both generations of teeth is regulated by similar mechanisms. In summary, histological and molecular studies on different model animals and transgenic mouse models were used to investigate tooth replacement. This thesis work has significantly contributed to the knowledge on the physiological mechanisms and molecular regulation of tooth replacement and its evolutionary suppression in mammals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For most RNA viruses RNA-dependent RNA polymerases (RdRPs) encoded by the virus are responsible for the entire RNA metabolism. Thus, RdRPs are critical components in the viral life cycle. However, it is not fully understood how these important enzymes function during viral replication. Double-stranded RNA (dsRNA) viruses perform the synthesis of their RNA genome within a proteinacous viral particle containing an RdRP as a minor constituent. The phi6 bacteriophage is the best-studied dsRNA virus, providing an excellent background for studies of its RNA synthesis. The purified recombinant phi6 RdRP is highly active in vitro and it possesses both RNA replication and transcription activities. The crystal structure of the phi6 polymerase, solved in complex with a number of ligands, provides a working model for detailed in vitro studies of RNA-dependent RNA polymerization. In this thesis, the primer-independent initiation of the phi6 RdRP was studied in vitro using biochemical and structural methods. A C-terminal, four-amino-acid-long loop protruding into the central cavity of the phi6 RdRP has been suggested to stabilize the incoming nucleotides of the initiation complex formation through stacking interactions. A similar structural element has been found from several other viral RdRPs. In this thesis, this so-called initiation platform loop was subjected to site-directed mutagenesis to address its role in the initiation. It was found that the initiation mode of the mutants is primer-dependent, requiring either an oligonucleotide primer or a back-priming initiation mechanism for the RNA synthesis. The crystal structure of a mutant RdRP with altered initiation platform revealed a set of contacts important for primer-independent initiation. Since phi6 RdRP is structurally and functionally homologous to several viral RdRPs, among them the hepatitis C virus RdRP, these results provide further general insight to understand primer-independent initiation. In this study it is demonstrated that manganese phasing could be used as a practical tool for solving structures of large proteins with a bound manganese ion. The phi6 RdRP was used as a case study to obtain phases for crystallographic analysis. Manganese ions are naturally bound to the phi6 RdRP at the palm domain of the enzyme. In a crystallographic experiment, X-ray diffraction data from a phi6 RdRP crystal were collected at a wavelength of 1.89 Å, which is the K edge of manganese. With this data an automatically built model of the core region of the protein could be obtained. Finally, in this work terminal nucleotidyl transferase (TNTase) activity of the phi6 RdRP was documented in the isolated polymerase as well as in the viral particle. This is the first time that such an activity has been reported in a polymerase of a dsRNA virus. The phi6 RdRP used uridine triphosphates as the sole substrate in a TNTase reaction but could accept several heterologous templates. The RdRP was able to add one or a few non-templated nucleotides to the 3' end of the single- or double-stranded RNA substrate. Based on the results on particle-mediated TNTase activity and previous structural information of the polymerase, a model for termination of the RNA-dependent RNA synthesis is suggested in this thesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing concern about global climate warming has accelerated research into renewable energy sources that could replace fossil petroleum-based fuels and materials. Bioethanol production from cellulosic biomass by fermentation with baker s yeast Saccharomyces cerevisiae is one of the most studied areas in this field. The focus has been on metabolic engineering of S. cerevisiae for utilisation of the pentose sugars, in particular D-xylose that is abundant in the hemicellulose fraction of biomass. Introduction of a heterologous xylose-utilisation pathway into S. cerevisiae enables xylose fermentation, but ethanol yield and productivity do not reach the theoretical level. In the present study, transcription, proteome and metabolic flux analyses of recombinant xylose-utilising S. cerevisiae expressing the genes encoding xylose reductase (XR) and xylitol dehydrogenase (XDH) from Pichia stipitis and the endogenous xylulokinase were carried out to characterise the global cellular responses to metabolism of xylose. The aim of these studies was to find novel ways to engineer cells for improved xylose fermentation. The analyses were carried out from cells grown on xylose and glucose both in batch and chemostat cultures. A particularly interesting observation was that several proteins had post-translationally modified forms with different abundance in cells grown on xylose and glucose. Hexokinase 2, glucokinase and both enolase isoenzymes 1 and 2 were phosphorylated differently on the two different carbon sources studied. This suggests that phosphorylation of glycolytic enzymes may be a yet poorly understood means to modulate their activity or function. The results also showed that metabolism of xylose affected the gene expression and abundance of proteins in pathways leading to acetyl-CoA synthesis and altered the metabolic fluxes in these pathways. Additionally, the analyses showed increased expression and abundance of several other genes and proteins involved in cellular redox reactions (e.g. aldo-ketoreductase Gcy1p and 6-phosphogluconate dehydrogenase) in cells grown on xylose. Metabolic flux analysis indicated increased NADPH-generating flux through the oxidative part of the pentose phosphate pathway in cells grown on xylose. The most importantly, results indicated that xylose was not able to repress to the same extent as glucose the genes of the tricarboxylic acid and glyoxylate cycles, gluconeogenesis and some other genes involved in the metabolism of respiratory carbon sources. This suggests that xylose is not recognised as a fully fermentative carbon source by the recombinant S. cerevisiae that may be one of the major reasons for the suboptimal fermentation of xylose. The regulatory network for carbon source recognition and catabolite repression is complex and its functions are only partly known. Consequently, multiple genetic modifications and also random approaches would probably be required if these pathways were to be modified for further improvement of xylose fermentation by recombinant S. cerevisiae strains.