956 resultados para Structural phase transition
Resumo:
The crystalline structure of transition-metals (TM) has been widely known for several decades, however, our knowledge on the atomic structure of TM clusters is still far from satisfactory, which compromises an atomistic understanding of the reactivity of TM clusters. For example, almost all density functional theory (DFT) calculations for TM clusters have been based on local (local density approximation-LDA) and semilocal (generalized gradient approximation-GGA) exchange-correlation functionals, however, it is well known that plain DFT fails to correct the self-interaction error, which affects the properties of several systems. To improve our basic understanding of the atomic and electronic properties of TM clusters, we report a DFT study within two nonlocal functionals, namely, the hybrid HSE (Heyd, Scuseria, and Ernzerhof) and GGA + U functionals, of the structural and electronic properties of the Co(13), Rh(13), and Hf(13) clusters. For Co(13) and Rh(13), we found that improved exchange-correlation functionals decrease the stability of open structures such as the hexagonal bilayer (HBL) and double simple-cubic (DSC) compared with the compact icosahedron (ICO) structure, however, DFT-GGA, DFT-GGA + U, and DFT-HSE yield very similar results for Hf(13). Thus, our results suggest that the DSC structure obtained by several plain DFT calculations for Rh(13) can be improved by the use of improved functionals. Using the sd hybridization analysis, we found that a strong hybridization favors compact structures, and hence, a correct description of the sd hybridization is crucial for the relative energy stability. For example, the sd hybridization decreases for HBL and DSC and increases for ICO in the case of Co(13) and Rh(13), while for Hf(13), the sd hybridization decreases for all configurations, and hence, it does not affect the relative stability among open and compact configurations.
Resumo:
The solvation effect of the ionic liquid 1-N-butyl-3-methylimidazolium hexafluorophosphate on nucleophilic substitution reactions of halides toward the aliphatic carbon of methyl p-nitrobenzenesulfonate (pNBS) was investigated by computer simulations. The calculations were performed by using a hybrid quantum-mechanical/molecular-mechanical (QM/MM) methodology. A semiempirical Hamiltonian was first parametrized on the basis of comparison with ab initio calculations for Cl(-) and Br(-) reaction with pNBS at gas phase. In condensed phase, free energy profiles were obtained for both reactions. The calculated reaction barriers are in agreement with experiment. The structure of species solvated by the ionic liquid was followed along the reaction progress from the reagents, through the transition state, to the final products. The simulations indicate that this substitution reaction in the ionic liquid is slower than in nonpolar molecular solvents proper to significant stabilization of the halide anion by the ionic liquid in comparison with the transition state with delocalized charge. Solute-solvent interactions in the first solvation shell contain several hydrogen bonds that are formed or broken in response to charge density variation along the reaction coordinate. The detailed structural analysis can be used to rationalize the design of new ionic liquids with tailored solvation properties. (c) 2008 American Institute of Physics.
Resumo:
The search for more realistic modeling of financial time series reveals several stylized facts of real markets. In this work we focus on the multifractal properties found in price and index signals. Although the usual minority game (MG) models do not exhibit multifractality, we study here one of its variants that does. We show that the nonsynchronous MG models in the nonergodic phase is multifractal and in this sense, together with other stylized facts, constitute a better modeling tool. Using the structure function (SF) approach we detected the stationary and the scaling range of the time series generated by the MG model and, from the linear (non-linear) behavior of the SF we identified the fractal (multifractal) regimes. Finally, using the wavelet transform modulus maxima (WTMM) technique we obtained its multifractal spectrum width for different dynamical regimes. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Yttria stabilized tetragonal zirconia (Y-TZP) ceramics were sintered by liquid phase sintering at low temperatures using bioglass as sintering additive. ZrO2-bioglass ceramics were prepared by mixing a ZrO2 stabilized with 3 Mol%Y2O3 and different amounts of bioglass based on 3CaO center dot P2O5-MgO-SiO2 system. Mixtures were compacted by uniaxial cold pressing and sintered in air, at 1200 and 1300 degrees C for 120 min. The influence of the bioglass content on the densification, tetragonal phase stability, bending strength, hardness and fracture toughness was investigated. The ceramics sintered at 1300 degrees C and prepared by addition of 3% of bioglass, exhibited the highest strength of 435 MPa, hardness of 1170 HV and fracture toughness of 6.3 MPa m(1/2). These results are related to the low monoclinic phase content, high relative density and the presence of the thermal residual stress generated between the ZrO2-matrix and bioglass grain boundary, contributing to the activation of the toughening mechanisms. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Ti-rich Ti-Si-B alloys can be considered for structural applications at high temperatures (max. 700 degrees C), however, phase equilibria data is reported only for T = 1250 degrees C. Thus, in this work the phase stability of this system has been evaluated at 700 degrees C. In order to attain equilibrium conditions in shorter time, rapid solidified samples have been prepared and carefully characterized. The microstructural characterization of the produced materials were based on X-ray diffraction (XRD), scanning electron microscopy (SEM-BSE), high resolution transmission electron microscopy (HRTEM), High Temperature X-ray diffraction with Synchrotron radiation (XRDSR) and Differential Scanning Calorimetry (DSC). Amorphous and amorphous with embedded nanocrystals have been observed after rapid solidification from specific alloy compositions. The values of the crystallization temperature (Tx) of the alloys were in the 509-647 degrees C temperature range. After Differential Scanning Calorimetry and High Temperature X-ray Diffraction with Synchrotron radiation, the alloys showed crystalline and basically formed by two or three of the following phases: alpha Ti, Ti(6)Si(2)B; Ti(5)Si(3); Ti(3)Si and TiB. It has been shown the stability of the Ti(3)Si and Ti(6)Si(2)B phases at 700 degrees C and the proposition of an isothermal section at this temperature. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In the Mo-Si binary system. Mo(5)Si(3) crystallizes in the W(5)Si(3) (T(1) phase) structure type. However, when boron replaces silicon in this compound, a structural transition occurs from the W(5)Si(3) prototype structure to the Cr(5)B(3) prototype structure (T(2) phase) at the composition Mo(5)SiB(2). Mo(5)SiB(2) has received much attention in the literature as a candidate for structural application in high-temperature turbines, but its electronic and magnetic behavior has not been explored. In this work, we show that Mo(5)SiB(2) is a bulk superconducting material with critical temperature close to 5.8 K. The specific-heat, resistivity and magnetization measurements reveal that this material is a conventional type II BCS superconductor. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The demands for improvement in sound quality and reduction of noise generated by vehicles are constantly increasing, as well as the penalties for space and weight of the control solutions. A promising approach to cope with this challenge is the use of active structural-acoustic control. Usually, the low frequency noise is transmitted into the vehicle`s cabin through structural paths, which raises the necessity of dealing with vibro-acoustic models. This kind of models should allow the inclusion of sensors and actuators models, if accurate performance indexes are to be accessed. The challenge thus resides in deriving reasonable sized models that integrate structural, acoustic, electrical components and the controller algorithm. The advantages of adequate active control simulation strategies relies on the cost and time reduction in the development phase. Therefore, the aim of this paper is to present a methodology for simulating vibro-acoustic systems including this coupled model in a closed loop control simulation framework that also takes into account the interaction between the system and the control sensors/actuators. It is shown that neglecting the sensor/actuator dynamics can lead to inaccurate performance predictions.
Resumo:
A Raman scattering study on multiple phase generation in silicon submitted to successive Vickers microindentation cycles, in different crystallographic orientations, was performed. The microindentations were perfon-ned in a virgin single crystal (100)-oriented surface, in the [001] and [011] directions. The results indicated that the formation of multiple phases by cyclic microindentation may depend on the crystallographic direction and number of successive cycles: the onset of several different structural phases was detected after the third cycle for the [001] direction and only after 15 cycles for the [011] direction, indicating that there is a crystallographic orientation dependence for multiple phase generation. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
An updated flow pattern map was developed for CO2 on the basis of the previous Cheng-Ribatski-Wojtan-Thome CO2 flow pattern map [1,2] to extend the flow pattern map to a wider range of conditions. A new annular flow to dryout transition (A-D) and a new dryout to mist flow transition (D-M) were proposed here. In addition, a bubbly flow region which generally occurs at high mass velocities and low vapor qualities was added to the updated flow pattern map. The updated flow pattern map is applicable to a much wider range of conditions: tube diameters from 0.6 to 10 mm, mass velocities from 50 to 1500 kg/m(2) s, heat fluxes from 1.8 to 46 kW/m(2) and saturation temperatures from -28 to +25 degrees C (reduced pressures from 0.21 to 0.87). The updated flow pattern map was compared to independent experimental data of flow patterns for CO2 in the literature and it predicts the flow patterns well. Then, a database of CO2 two-phase flow pressure drop results from the literature was set up and the database was compared to the leading empirical pressure drop models: the correlations by Chisholm [3], Friedel [4], Gronnerud [5] and Muller-Steinhagen and Heck [6], a modified Chisholm correlation by Yoon et al. [7] and the flow pattern based model of Moreno Quiben and Thome [8-10]. None of these models was able to predict the CO2 pressure drop data well. Therefore, a new flow pattern based phenomenological model of two-phase flow frictional pressure drop for CO2 was developed by modifying the model of Moreno Quiben and Thome using the updated flow pattern map in this study and it predicts the CO2 pressure drop database quite well overall. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Sigma phase is a deleterious one which can be formed in duplex stainless steels during heat treatment or welding. Aiming to accompany this transformation, ferrite and sigma percentage and hardness were measured on samples of a UNS S31803 duplex stainless steel submitted to heat treatment. These results were compared to measurements obtained from ultrasound and eddy current techniques, i.e., velocity and impedance, respectively. Additionally, backscattered signals produced by wave propagation were acquired during ultrasonic inspection as well as magnetic Barkhausen noise during magnetic inspection. Both signal types were processed via a combination of detrended-fluctuation analysis (DFA) and principal component analysis (PCA). The techniques used were proven to be sensitive to changes in samples related to sigma phase formation due to heat treatment. Furthermore, there is an advantage using these methods since they are nondestructive. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this article is to study the application of the holographic interferometry techniques in the structural analysis of submarine environment. These techniques are widely used today, with applications in many areas. Nevertheless, its application in submarine environments presents some challenges. The application of two techniques, electronic speckle pattern interferometry (ESPI) and digital holography, comparison of advantages and disadvantages of each of them is presented. A brief study is done on the influence of water properties and the optical effects due to suspended particles as well as possible solutions to minimize these problems. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A polymer precursor method has been used to synthesize Ni-doped SnO(2) nanoparticles. X-ray diffraction (XRD) data analyses indicate the exclusive formation of nanosized particles with rutile-type phase (tetragonal SnO(2)) for Ni contents below 10 mol%. In this concentration range, the particle sizes decrease with increasing Ni content and a bulk solid solution limit was determined at similar to 1 mol%. Ni surface enrichment is present at concentrations higher than the solution limit. Only above 10 mol% Ni. the formation of a second NiO-related phase has been determined. Magnetization measurements suggest the occurrence of ferromagnetism for samples in the solid solution regime (below similar to 1 mol%). This ferromagnetism is associated with the exchange interaction between electron spins trapped on oxygen vacancies, and is enhanced as the amount of Ni(2+) substituting at Sn(4+) sites increases. Above the solid solution limit, ferromagnetism is destroyed by the Ni surface enrichment and the system behaves as a paramagnet. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Poly(3-hydroxybutyrate) (PHB) is a very promising biopolymer. In order to improve its processability and decrease its brittleness, PHB/elastomer blends can be prepared. In the work reported, the effect of the addition of a rubbery phase, i.e. ethylene - propylene-diene terpolymer (EPDM) or poly(vinyl butyral) (PVB), on the properties of PHB was studied. The effects of rubber type and of changing the PHB/elastomer blend processing method on the crystallinity and physical properties of the blends were also investigated. For blends based on PHB, the main role of EPDM is its nucleating effect evidenced by a decrease of crystallization temperature and an increase of crystallinity with increasing EPDM content regardless of the processing route. While EPDM has a weak effect on PHB glass transition temperature, PVB induces a marked decrease of this temperature thank to its plasticizer that swells the PHB amorphous phase. A promising solution to improve the mechanical properties of PHB seems to be the melt-processing of PHB with both plasticizer and EPDM. In fact, the plasticizer is more efficient than the elastomer in decreasing the PHB glass transition temperature and, because of the nucleating effect of EPDM, the decrease of the PHB modulus due to the plasticizer can be counterbalanced. (C) 2010 Society of Chemical Industry
Resumo:
Adenine phosphoribosyltransferase (APRT) is an important enzyme component of the purine recycling pathway. Parasitic protozoa of the order Kinetoplastida are unable to synthesize purines de novo and use the salvage pathway for the synthesis of purine bases rendering this biosynthetic pathway an attractive target for antiparasitic drug design. The recombinant human adenine phosphoribosyltransferase (hAPRT) structure was resolved in the presence of AMP in the active site to 1.76 angstrom resolution and with the substrates PRPP and adenine simultaneously bound to the catalytic site to 1.83 angstrom resolution. An additional structure was solved containing one subunit of the dimer in the apo-form to 2.10 angstrom resolution. Comparisons of these three hAPRT structures with other `type I` PRTases revealed several important features of this class of enzymes. Our data indicate that the flexible loop structure adopts an open conformation before and after binding of both substrates adenine and PRPR Comparative analyses presented here provide structural evidence to propose the role of Glu 104 as the residue that abstracts the proton of adenine N9 atom before its nucleophilic attack on the PRPP anomeric carbon. This work leads to new insights to the understanding of the APRT catalytic mechanism.
Resumo:
The present article describes an L-amino acid oxidase from Bothrops atrox snake venom as with antiprotozoal activities in Trypanosoma cruzi and in different species of Leishmania (Leishmania braziliensis, Leishmania donovani and Leishmania major). Leishmanicidal effects were inhibited by catalase, suggesting that they are mediated by H(2)O(2) production. Leishmania spp. cause a spectrum of diseases, ranging from self-healing ulcers to disseminated and often fatal infections, depending on the species involved and the host`s immune response. BatroxLAAO also displays bactericidal activity against both Gram-positive and Gram-negative bacteria. The apoptosis induced by BatroxLAAO on HL-60 cell lines and PBMC cells was determined by morphological cell evaluation using a mix of fluorescent dyes. As revealed by flow cytometry analysis, suppression of cell proliferation with BatroxLAAO was accompanied by the significant accumulation of cells in the G0/G1 phase boundary in HL-60 cells. BatroxLAAO at 25 mu g/mL and 50 mu g/mL blocked G0-G1 transition, resulting in G0/G1 phase cell cycle arrest, thereby delaying the progression of cells through S and G2/M phase in HL-60 cells. This was shown by an accentuated decrease in the proportion of cells in S phase, and the almost absence of G2/M phase cell population. BatroxLAAO is an interesting enzyme that provides a better understanding of the ophidian envenomation mechanism, and has biotechnological potential as a model for therapeutic agents. (C) 2011 Elsevier Masson SAS. All rights reserved.