982 resultados para Stream flow
Resumo:
A flow-injection system with sample and reagent addition by the synchronous merging zones approach for calcium determination in milk by flame AAS is proposed. Main parameters were optimized using a factorial design with central point. The optimum conditions were 2.5% (m/v) for La concentration, 8 mL min-1 for the carrier flow-rate, 20 cm for coiled reactor and 250 ìL for sample volume. Different sample preparation procedures were evaluated such as dilution in water or acid and microwave-assisted decomposition using concentrated or diluted acids. The optimized flow system was applied to determine Ca in eleven commercial milk samples and two standard reference materials diluted in water. Similar calcium levels were encountered comparing the results obtained by the proposed method (dilution in water) with those obtained using microwave-oven digestion. Results obtained in two standard reference materials were in agreement at 95% confidence level with those certified. Recoveries of spiked samples were in the 93% - 116% range. Relative standard deviation (n = 12) was < 5.4% and the sample throughput was 150 measurements per hour, corresponding to a consumption of 250 µL of sample and 6.25 mg La per determination.
Resumo:
Blood flow in human aorta is an unsteady and complex phenomenon. The complex patterns are related to the geometrical features like curvature, bends, and branching and pulsatile nature of flow from left ventricle of heart. The aim of this work was to understand the effect of aorta geometry on the flow dynamics. To achieve this, 3D realistic and idealized models of descending aorta were reconstructed from Computed Tomography (CT) images of a female patient. The geometries were reconstructed using medical image processing code. The blood flow in aorta was assumed to be laminar and incompressible and the blood was assumed to be Newtonian fluid. A time dependent pulsatile and parabolic boundary condition was deployed at inlet. Steady and unsteady blood flow simulations were performed in real and idealized geometries of descending aorta using a Finite Volume Method (FVM) code. Analysis of Wall Shear Stress (WSS) distribution, pressure distribution, and axial velocity profiles were carried out in both geometries at steady and unsteady state conditions. The results obtained in thesis work reveal that the idealization of geometry underestimates the values of WSS especially near the region with sudden change of diameter. However, the resultant pressure and velocity in idealized geometry are close to those in real geometry
Resumo:
The objective of the work is to study fluid flow behavior through a pinch valve and to estimate the flow coefficient (KV ) at different opening positions of the valve. The flow inside a compressed valve is more complex than in a straight pipe, and it is one of main topics of interest for engineers in process industry. In the present work, we have numerically simulated compressed valve flow at different opening positions. In order to simulate the flow through pinch valve, several models of the elastomeric valve tube (pinch valve tube) at different opening positions were constructed in 2D-axisymmetric and 3D geometries. The numerical simulations were performed with the CFD packages; ANSYS FLUENT and ANSYS CFX by using parallel computing. The distributions of static pressure, velocity and turbulent kinetic energy have been studied at different opening positions of the valve in both 2D-axisymmetric and 3D experiments. The flow coefficient (KV ) values have been measured at different valve openings and are compared between 2D-axisymmetric and 3D simulation results.
Resumo:
Transitional flow past a three-dimensional circular cylinder is a widely studied phenomenon since this problem is of interest with respect to many technical applications. In the present work, the numerical simulation of flow past a circular cylinder, performed by using a commercial CFD code (ANSYS Fluent 12.1) with large eddy simulation (LES) and RANS (κ - ε and Shear-Stress Transport (SST) κ - ω! model) approaches. The turbulent flow for ReD = 1000 & 3900 is simulated to investigate the force coefficient, Strouhal number, flow separation angle, pressure distribution on cylinder and the complex three dimensional vortex shedding of the cylinder wake region. The numerical results extracted from these simulations have good agreement with the experimental data (Zdravkovich, 1997). Moreover, grid refinement and time-step influence have been examined. Numerical calculations of turbulent cross-flow in a staggered tube bundle continues to attract interest due to its importance in the engineering application as well as the fact that this complex flow represents a challenging problem for CFD. In the present work a time dependent simulation using κ – ε, κ - ω! and SST models are performed in two dimensional for a subcritical flow through a staggered tube bundle. The predicted turbulence statistics (mean and r.m.s velocities) have good agreement with the experimental data (S. Balabani, 1996). Turbulent quantities such as turbulent kinetic energy and dissipation rate are predicted using RANS models and compared with each other. The sensitivity of grid and time-step size have been analyzed. Model constants sensitivity study have been carried out by adopting κ – ε model. It has been observed that model constants are very sensitive to turbulence statistics and turbulent quantities.
Resumo:
A spectrophotometric flow injection method for the determination of paracetamol in pharmaceutical formulations is proposed. The procedure was based on the oxidation of paracetamol by sodium hypochloride and the determination of the excess of this oxidant using o-tolidine dichloride as chromogenic reagent at 430 nm. The analytical curve was linear in the paracetamol concentration range from 8.50 x 10-6 to 2.51 x 10-4 mol L-1 with a detection limit of 5.0 x 10-6 mol L-1. The relative standard deviation was smaller than 1.2% for 1.20 x 10-4 mol L-1 paracetamol solution (n = 10). The results obtained for paracetamol in pharmaceutical formulations using the proposed flow injection method and those obtained using a USP Pharmacopoeia method are in agreement at the 95% confidence level.
Resumo:
A flow injection method for the quantitative analysis of vancomycin hydrochloride, C66H75Cl2N9O24.HCl (HVCM), based on the reaction with copper (II) ions, is presented. HVCM forms a lilac-blue complex with copper ions at pH≅4.5 in aqueous solutions, with maximum absorption at 555 nm. The detection limit was estimated to be about 8.5×10-5 mol L-1; the quantitation limit is about 2.5×10-4 mol L-1 and about 30 determinations can be performed in an hour. The accuracy of the method was tested through recovery procedures in presence of four different excipients, in the proportion 1:1 w/w. The results were compared with those obtained with the batch spectrophotometric and with the HPLC methods. Statistical comparison was done using the Student's procedure. Complete agreement was found at a 0.95 significance level between the proposed flow injection and the batch spectrophotometric methods, which present similar precision (RSD: 2.1 % vs. 1.9%).
Resumo:
Flow injection (FI) methodology, using diffuse reflectance in the visible region of the spectrum, for the analysis of total sulfur in the form of sulfate, precipitated in the form of barium sulfate, is presented. The method was applied to biodiesel, to plant leaves and to natural waters analysis. The analytical signal (S) correlates linearly with sulfate concentration (C) between 20 and 120 ppm, through the equation S=-1.138+0.0934 C (r = 0.9993). The experimentally observed limit of detection is about 10 ppm. The mean R.S.D. is about 3.0 %. Real samples containing sulfate were analyzed and the results obtained by the FI and by the reference batch turbidimetric method using the statistical Student's t-test and F-test were compared.
Resumo:
The application of multivariate calibration techniques to multicomponent analysis by UV-VIS molecular absorption spectrometry is a powerful tool for simultaneous determination of several chemical species. However, when this methodology is accomplished manually, it is slow and laborious, consumes high amounts of reagents and samples, is susceptible to contaminations and presents a high operational cost. To overcome these drawbacks, a flow-batch analyser is proposed in this work. This analyser was developed for automatic preparation of standard calibration and test (or validation) mixtures. It was applied to the simultaneous determination of Cu2+, Mn2+ and Zn2+ in polyvitaminic and polymineral pharmaceutical formulations, using 4-(2-piridilazo) resorcinol as reagent and a UV-VIS spectrophotometer with a photodiode array detector. The results obtained with the proposed system are in good agreement with those obtained by flame atomic absorption spectrometry, which was employed as reference method. With the proposed analyser, the preparation of calibration and test mixtures can be accomplished about four hours, while the manual procedure requires at least two days. Moreover, it consumes smaller amounts of reagents and samples than the manual procedure. After the preparation of calibration and test mixtures, 60 samples h-1 can be carried out with the proposed flow-batch analyser.
Resumo:
A spectrophotometric flow injection method for the determination of Zn(II) in ophthalmic formulations was developed. In this work, Zn(II) ion was complexed with Alizarin red S in borate buffer solution (pH 9.0) and the chromophore produced was monitored at 520 nm. The analytical curve was linear in the Zn(II) concentration range from 6.05 x 10-6 to 1.50 x 10-4 mol L-1 with a detection limit of 3.60 x 10-6 mol L-1. Recoveries ranged from 96.3 to 105 % and a relative standard deviation of 1.2 % (n = 10) for 5.5x10-5 mol L-1 Zn(II) reference solution were obtained. The sampling rate was 60 h-1 and the results obtained of Zn(II) in ophthalmic products using this procedure are in close agreement with those obtained using a comparative spectrophotometric procedure at 95 % confidence level.
Resumo:
The aim of the thesis is to analyze traffic flows and its development from North European companies` point of view to China and Russia using data from logistics questionnaire. Selected North European companies are large Finnish and Swedish companies. The questionnaire was sent via email to the target group. The study is based on the answers got from respondent companies from years 2006, 2009 and 2010. In the thesis Finnish Talouselämä newspaper and Swedish Affärsdata are used as a database to find the target companies for the survey. Respondents were most often logistics managers in companies. In the beginning of the thesis concepts of transportation logistics is presented, including container types, trade terms, axel loads in roads and in railways. Also there is information about warehousing types and terminals. After that, general information of Chinese and Russian transportation logistics is presented. Chinese and Russian issues are discussed in two sections. In both of them it is analyzed economic development, freight transport and trade balance. Some practical examples of factory inaugurations in China and Russia are presented that Finnish and Swedish companies have completed. In freight transport section different transportation modes, logistics outsourcing and problems of transportation logistics is discussed. The results of the thesis show that transportation flows between Europe and China is changing. Freight traffic from China to European countries will strengthen even more from the current base. When it comes to Russia and Europe, traffic flows seem to be changing from eastbound traffic to westbound traffic. It means that in the future it is expected more freight traffic from Russia to Europe. Some probable reasons for that are recent factory establishments in Russia and company interviews support also this observation. Effects of the economic recession are mainly seen in the lower transportation amounts in 2009.
Resumo:
An optode based on thymol blue (TB), an acid-based indicator, has been constructed and evaluated as a detector in FIA system for CO2 determination. The dye was chemically immobilised on the surface of a bifurcated glass optical fibre bundle, using silanisation in organic media. In FIA system, hydrogen carbonate or carbonate samples are injected in a buffer carrier solution, and then are mixed with phosphoric acid solution to generate CO2, which diffuses through a PTFE membrane, in order to be collected in an acceptor carrier fluid, pumped towards to detection cell, in which the optode was adapted. The proposed system presents two linear response ranges, from 1.0 x 10-3 to 1.0 x 10-2 mol l-1, and from 2.0 x 10-2 to 0.10 mol l-1. The sampling frequency was 11 sample h-1, with good repeatability (R.S.D < 4 %, n = 10). In flow conditions the optode lifetime was 170 h. The system was applied in the analysis of commercial mineral water and the results obtained in the hydrogen carbonate determination did not differ significantly from those obtained by potentiometry, at a confidence level of 95 %.
Resumo:
Työn tarkoituksena oli suunnitella, ohjelmoida ja koekäyttää SMB-laitteisto (Simulated Moving Bed) hydrometallurgisiin erotuksiin. Simuloitu liikkuvapeti saadaan aikaan vaihtamalla sisään- ja ulostuloporttien paikkaa nestevirran suuntaan. Tällöin aikaansaadaan kiintoaineen vastavirtaus minkä johdosta erotustehokkuus kasvaa. Komponenttien retentiotaipumuseroista johtuen komponentit liikkuvat eri nopeuksilla kolonnijärjestelmässä. Enemmän pidättäytyvät komponentit liikkuvat nestevirtaa vastaan ja vähemmän pidättäytyvät komponentit nestevirran mukana. Hydrometallurgiassa vastavirtauksen käyttöä ei ole tieteellisissä julkaisuissa käsitelty laajalti ja saatavilla oleva informaatio onkin kaupallisten yritysten tuottamaa. Hydrometallurgiassa vastavirtausta käyttävissä ioninvaihtolaitteistoissa hyödynnetään irrallisia regenerointivyöhykkeitä. Venttiilijärjestelmän osalta päädyttiin ratkaisuun jossa käytetään yhtä kiertoventtiiliä kullekin virralle, minkä lisäksi kolonnien väleillä käytetään solenoidiventtiiliä. Tämä järjestelmä mahdollistaa yleisimpien SMB-menetelmien käytön mukaan lukien irralliset vyöhykkeet. Laitteiston ohjauksesta vastaa LabVIEW 2010:llä ohjelmoitu ohjelmisto, joka sisältää kaikkien tarvittavien laitteiden ohjausrutiinit. Se mahdollistaa venttiilien synkroniset ja epäsynkroniset vaihdot. Laitteiston puhdistusta varten on ohjelmistoon rakennettu oma rutiini venttiilejä varten. Pumppujen osalta ohjelmisto mahdollistaa vakiovirtauksen sekä lineaaristen ja porrasmuotoisten gradienttien käytön. Ongelmatilanteita varten ohjelmisto valvoo pumppujen ja venttiilien toimintaa ja pysäyttää laitteiston tarvittaessa. Koekäytön avulla pystyttiin todentamaan laitteiston toimivuus.
Resumo:
Diplomityön tavoitteena oli selvittää Loviisan ydinvoimalaitoksen höyryturbiinin suoritus-kyvyn mittaamiseen käytettävissä olevia menetelmiä ja mittausjärjestelmiä. Tavoitteena oli selvittää mitkä tekijät aiheuttavat mittauksiin mittausvirheitä ja tutkia turbiineiden nykyisten mittalaitteiden epävarmuudet. Tässä diplomityössä selvitettiin millaisia standardinmukaisia testejä sekä muita varteenotettavia testejä turbiinin suorituskyvyn määrittämiseen on käytetty ja millaisia mittauksia ne vaativat. Lisäksi tutkittiin eri lähteistä millaisia mittalaitteita ja mittausjärjestelmiä voidaan käyttää turbiinin toiminnan mittauksiin. Soveltuvista mittausmenetelmistä esitettiin toimintaperiaatteet ja teoria. Kunnonvalvontaa varten esiteltiin värähtelyiden ja vääntö-momentin mittaamisen periaatteet. Epävarmuuksia arvioitiin mittalaitteiden teoreettisen epävarmuuden ja laitesijoittelun pohjalta. Työssä havaittiin, että suorituskyvyn arvioimiseksi on olemassa useita standardeja, mutta niiden mukaisiin mittauksiin tarvittaisiin nykyistä enemmän mittaustuloksia. Tarkkoja sekä luotettavia mittaustuloksia on haasteellista saada kaksifaasivirtauksesta. Mittalaitevalinnoilla ja mittalaitteiden määrää lisäämällä voidaan mittausten epävarmuutta pienentää. Loviisan ydinvoimalaitokselle ehdotettiin muutamia mittausjärjestelmiä turbiinin suoritus-kyvyn määrittämiseksi. Erityisesti turbiinin sisäiset olosuhteet tulisi määrittää nykyistä tarkemmin. Vääntömomentin mittaaminen olisi hyvä kunnonvalvonnan työkalu.
Resumo:
This thesis presents a three-dimensional, semi-empirical, steady state model for simulating the combustion, gasification, and formation of emissions in circulating fluidized bed (CFB) processes. In a large-scale CFB furnace, the local feeding of fuel, air, and other input materials, as well as the limited mixing rate of different reactants produce inhomogeneous process conditions. To simulate the real conditions, the furnace should be modelled three-dimensionally or the three-dimensional effects should be taken into account. The only available methods for simulating the large CFB furnaces three-dimensionally are semi-empirical models, which apply a relatively coarse calculation mesh and a combination of fundamental conservation equations, theoretical models and empirical correlations. The number of such models is extremely small. The main objective of this work was to achieve a model which can be applied to calculating industrial scale CFB boilers and which can simulate all the essential sub-phenomena: fluid dynamics, reactions, the attrition of particles, and heat transfer. The core of the work was to develop the model frame and the required sub-models for determining the combustion and sorbent reactions. The objective was reached, and the developed model was successfully used for studying various industrial scale CFB boilers combusting different types of fuel. The model for sorbent reactions, which includes the main reactions for calcitic limestones, was applied for studying the new possible phenomena occurring in the oxygen-fired combustion. The presented combustion and sorbent models and principles can be utilized in other model approaches as well, including other empirical and semi-empirical model approaches, and CFD based simulations. The main achievement is the overall model frame which can be utilized for the further development and testing of new sub-models and theories, and for concentrating the knowledge gathered from the experimental work carried out at bench scale, pilot scale and industrial scale apparatus, and from the computational work performed by other modelling methods.
Resumo:
The update of the Finnish legislation concerning waste was unavoidable, to comply with the European Union (EU) requirements defined in the EU-Directive on Waste. The new waste law updates were enacted into the Finnish legislation on the 11.03.2011 and targeted for applicability by the 11.03.2012. This thesis investigates the implications of the new amendments to the waste legislation from the perspective of green sand foundries. The investigations are conducted by comparing two of Componenta’s green sand foundries and evaluating their waste streams. Additionally, the impacts of legislation amendments are critiqued on their environmental and economic aspects. The study’s comparison of waste fractions at the two foundries reveals that sand is dominant in absolute tonnage and costs. The increments of waste taxes forces foundries to focus on waste management, recycling and disposing. The new legislation’s promotion of material efficiency, also guides foundries towards the prevention of waste. A potential preventive measure is to regenerate waste sand resulting to cost savings on both raw-materials and waste management. However, the lack of absolute targets for waste prevention or recycling rates discourages the interests towards creating or adopting new technologies and methods for the waste handling.