921 resultados para Self-assembled Monolayers


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Selective area growth (SAG) of GaN nanocolumns (NCs), making use of patterned or masked (nanoholes) substrates, yields a periodic, homogeneous distribution of nanostructures, that makes their processing much easier compared with self-assembled ones. In addition, the control on the diameter and density of NCs avoids dispersion in the electrooptical characteristics of the heterostructures based on this type of material (embedded InGaN/GaN quantum disks for example). Selective area growth using a mask with nanohole arrays has been demonstrated by rf-plasma-assisted MBE [1, 2].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Self-assembled InGaAs quantum dots show unique physical properties such as three dimensional confinement, high size homogeneity, high density and low number of dislocations. They have been extensively used in the active regions of laser devices for optical communications applications [1]. Therefore, buried quantum dots (BQDs) embedded in wider band gap materials have been normally studied. The wave confinement in all directions and the stress field around the dot affect both optical and electrical properties [2, 3]. However, surface quantum dots (SQDs) are less affected by stress, although their optical and electrical characteristics have a strong dependence on surface fluctuation. Thus, they can play an important role in sensor applications

Relevância:

80.00% 80.00%

Publicador:

Resumo:

III-nitride nanorods have attracted much scientific interest during the last decade because of their unique optical and electrical properties [1,2]. The high crystal quality and the absence of extended defects make them ideal candidates for the fabrication of high efficiency opto-electronic devices such as nano-photodetectors, light-emitting diodes, and solar cells [1-3]. Nitride nanorods are commonly grown in the self-assembled mode by plasma-assisted molecular beam epitaxy (MBE) [4]. However, self-assembled nanorods are characterized by inhomogeneous heights and diameters, which render the device processing very difficult and negatively affect the electronic transport properties of the final device. For this reason, the selective area growth (SAG) mode has been proposed, where the nanorods preferentially grow with high order on pre-defined sites on a pre-patterned substrate

Relevância:

80.00% 80.00%

Publicador:

Resumo:

GaN/InGaN nanorods have attracted much scientific interest during the last decade because of their unique optical and electrical properties [1,2]. The high crystal quality and the absence of extended defects make them ideal candidates for the fabrication of high efficiency opto-electronic devices such as nano-photodetectors, light-emitting diodes, and solar cells [1-3]. Nitrides nanorods are commonly grown in the self-assembled mode by plasma-assisted molecular beam epitaxy (MBE) [4]. However, self-assembled nanorods are characterized by inhomogeneous heights and diameters, which render the device processing very difficult and negatively affect the electronic transport properties of the final device. For this reason, the selective area growth (SAG) mode has been proposed, where the nanorods preferentially grow on pre-defined sites on a pre-patterned substrate [5].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diluted nitride self-assembled In(Ga)AsN quantum dots (QDs) grown on GaAs substrates are potential candidates to emit in the windows of maximum transmittance for optical fibres (1.3-1.55 μm). In this paper, we analyse the effect of nitrogen addition on the indium desorption occurring during the capping process of InxGa1−xAs QDs (x = l and 0.7). The samples have been grown by molecular beam epitaxy and studied through transmission electron microscopy (TEM) and photoluminescence techniques. The composition distribution inside the dots was determined by statistical moiré analysis and measured by energy dispersive X-ray spectroscopy. First, the addition of nitrogen in In(Ga)As QDs gave rise to a strong redshift in the emission peak, together with a large loss of intensity and monochromaticity. Moreover, these samples showed changes in the QDs morphology as well as an increase in the density of defects. The statistical compositional analysis displayed a normal distribution in InAs QDs with an average In content of 0.7. Nevertheless, the addition of Ga and/or N leads to a bimodal distribution of the Indium content with two separated QD populations. We suggest that the nitrogen incorporation enhances the indium fixation inside the QDs where the indium/gallium ratio plays an important role in this process. The strong redshift observed in the PL should be explained not only by the N incorporation but also by the higher In content inside the QDs

Relevância:

80.00% 80.00%

Publicador:

Resumo:

•Self- assembled Ga(In)N Nanorods and Nanostructures •Ordered growth of GaN Nanorods: masks issues •Ordered growth of GaN Nanorods: mechanisms •White NanoLEDs

Relevância:

80.00% 80.00%

Publicador:

Resumo:

InN layers: MBE growth issues Growth of InN-based thin films: InN/InGaN QWS on GaN Growth of InN-based nanorods ● Self Self-assembled assembled InN InN nanorods nanorods onon different different substrates substrates ● Self-assembled InGaN nanorods ● Broad- Broad-emission emission nanostructures ● Self Self--assembled assembled InGaN InGaN--based based Qdisks Qdisks ● Selective area growth (SAG) of InGaN Qdisks

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Esta memoria está basada en el crecimiento y caracterización de heteroestructuras Al(Ga)N/GaN y nanocolumnas ordenadas de GaN, y su aplicación en sensores químicos. El método de crecimiento ha sido la epitaxia de haces moleculares asistida por plasma (PAMBE). En el caso de las heteroestructuras Al(Ga)N/GaN, se han crecido barreras de distinto espesor y composición, desde AlN de 5 nm, hasta AlGaN de 35 nm. Además de una caracterización morfológica, estructural y eléctrica básica de las capas, también se han fabricado a partir de ellas dispositivos tipo HEMTs. La caracterización eléctrica de dichos dispositivos (carga y movilidad de en el canal bidimensional) indica que las mejores heteroestructuras son aquellas con un espesor de barrera intermedio (alrededor de 20 nm). Sin embargo, un objetivo importante de esta Tesis ha sido verificar las ventajas que podían tener los sensores basados en heteroestructuras AlN/GaN (frente a los típicos basados en AlGaN/GaN), con espesores de barrera muy finos (alrededor de 5 nm), ya que el canal de conducción que se modula por efecto de cambios químicos está más cerca de la superficie en donde ocurren dichos cambios químicos. De esta manera, se han utilizado los dispositivos tipo HEMTs como sensores químicos de pH (ISFETs), y se ha comprobado la mayor sensibilidad (variación de corriente frente a cambios de pH, Ids/pH) en los sensores basados en AlN/GaN frente a los basados en AlGaN/GaN. La mayor sensibilidad es incluso más patente en aplicaciones en las que no se utiliza un electrodo de referencia. Se han fabricado y caracterizado dispositivos ISFET similares utilizando capas compactas de InN. Estos sensores presentan peor estabilidad que los basados en Al(Ga)N/GaN, aunque la sensibilidad superficial al pH era la misma (Vgs/pH), y su sensibilidad en terminos de corriente de canal (Ids/pH) arroja valores intermedios entre los ISFET basados en AlN/GaN y los valores de los basados en AlGaN/GaN. Para continuar con la comparación entre dispositivos basados en Al(Ga)N/GaN, se fabricaron ISFETs con el área sensible más pequeña (35 x 35 m2), de tamaño similar a los dispositivos destinados a las medidas de actividad celular. Sometiendo los dispositivos a pulsos de voltaje en su área sensible, la respuesta de los dispositivos de AlN presentaron menor ruido que los basados en AlGaN. El ruido en la corriente para dispositivos de AlN, donde el encapsulado no ha sido optimizado, fue tan bajo como 8.9 nA (valor rms), y el ruido equivalente en el potencial superficial 38.7 V. Estos valores son más bajos que los encontrados en los dispositivos típicos para la detección de actividad celular (basados en Si), y del orden de los mejores resultados encontrados en la literatura sobre AlGaN/GaN. Desde el punto de vista de la caracterización electro-química de las superficies de GaN e InN, se ha determinado su punto isoeléctrico. Dicho valor no había sido reportado en la literatura hasta el momento. El valor, determinado por medidas de “streaming potential”, es de 4.4 y 4 respectivamente. Este valor es una importante característica a tener en cuenta en sensores, en inmovilización electrostática o en la litografía coloidal. Esta última técnica se discute en esta memoria, y se aplica en el último bloque de investigación de esta Tesis (i.e. crecimiento ordenado). El último apartado de resultados experimentales de esta Tesis analiza el crecimiento selectivo de nanocolumnas ordenadas de GaN por MBE, utilizando mascaras de Ti con nanoagujeros. Se ha estudiado como los distintos parámetros de crecimiento (i.e. flujos de los elementos Ga y N, temperatura de crecimiento y diseño de la máscara) afectan a la selectividad y a la morfología de las nanocolumnas. Se ha conseguido con éxito el crecimiento selectivo sobre pseudosustratos de GaN con distinta orientación cristalina o polaridad; templates de GaN(0001)/zafiro, GaN(0001)/AlN/Si, GaN(000-1)/Si y GaN(11-20)/zafiro. Se ha verificado experimentalmente la alta calidad cristalina de las nanocolumnas ordenadas, y su mayor estabilidad térmica comparada con las capas compactas del mismo material. Las nanocolumnas ordenadas de nitruros del grupo III tienen una clara aplicación en el campo de la optoelectrónica, principalmente para nanoemisores de luz blanca. Sin embargo, en esta Tesis se proponen como alternativa a la utilización de capas compactas o nanocolumnas auto-ensambladas en sensores. Las nanocolumnas auto-ensambladas de GaN, debido a su alta razón superficie/volumen, son muy prometedoras en el campo de los sensores, pero su amplia dispersión en dimensiones (altura y diámetro) supone un problema para el procesado y funcionamiento de dispositivos reales. En ese aspecto, las nanocolumnas ordenadas son más robustas y homogéneas, manteniendo una alta relación superficie/volumen. Como primer experimento en el ámbito de los sensores, se ha estudiado como se ve afectada la emisión de fotoluminiscencia de las NCs ordenadas al estar expuestas al aire o al vacio. Se observa una fuerte caída en la intensidad de la fotoluminiscencia cuando las nanocolumnas están expuestas al aire (probablemente por la foto-adsorción de oxigeno en la superficie), como ya había sido documentado anteriormente en nanocolumnas auto-ensambladas. Este experimento abre el camino para futuros sensores basados en nanocolumnas ordenadas. Abstract This manuscript deals with the growth and characterization of Al(Ga)N/GaN heterostructures and GaN ordered nanocolumns, and their application in chemical sensors. The growth technique has been the plasma-assisted molecular beam epitaxy (PAMBE). In the case of Al(Ga)N/GaN heterostructures, barriers of different thickness and composition, from AlN (5 nm) to AlGaN (35 nm) have been grown. Besides the basic morphological, structural and electrical characterization of the layers, HEMT devices have been fabricated based on these layers. The best electrical characteristics (larger carriers concentration and mobility in the two dimensional electron gas) are those in AlGaN/GaN heterostructures with a medium thickness (around 20 nm). However, one of the goals of this Thesis has been to verify the advantages that sensors based on AlN/GaN (thickness around 7 nm) have compared to standard AlGaN/GaN, because the conduction channel to be modulated by chemical changes is closer to the sensitive area. In this way, HEMT devices have been used as chemical pH sensors (ISFETs), and the higher sensitivity (conductance change related to pH changes, Ids/pH) of AlN/GaN based sensors has been proved. The higher sensibility is even more obvious in application without reference electrode. Similar ISFETs devices have been fabricated based on InN compact layers. These devices show a poor stability, but its surface sensitivity to pH (Vgs/pH) and its sensibility (Ids/pH) yield values between the corresponding ones of AlN/GaN and AlGaN/GaN heterostructures. In order to a further comparison between Al(Ga)N/GaN based devices, ISFETs with smaller sensitive area (35 x 35 m2), similar to the ones used in cellular activity record, were fabricated and characterized. When the devices are subjected to a voltage pulse through the sensitive area, the response of AlN based devices shows lower noise than the ones based on AlGaN. The noise in the current of such a AlN based device, where the encapsulation has not been optimized, is as low as 8.9 nA (rms value), and the equivalent noise to the surface potential is 38.7 V. These values are lower than the found in typical devices used for cellular activity recording (based on Si), and in the range of the best published results on AlGaN/GaN. From the point of view of the electrochemical characterization of GaN and InN surfaces, their isoelectric point has been experimentally determined. Such a value is the first time reported for GaN and InN surfaces. These values are determined by “streaming potential”, being pH 4.4 and 4, respectively. Isoelectric point value is an important characteristic in sensors, electrostatic immobilization or in colloidal lithography. In particular, colloidal lithography has been optimized in this Thesis for GaN surfaces, and applied in the last part of experimental results (i.e. ordered growth). The last block of this Thesis is focused on the selective area growth of GaN nanocolumns by MBE, using Ti masks decorated with nanoholes. The effect of the different growth parameters (Ga and N fluxes, growth temperature and mask design) is studied, in particular their impact in the selectivity and in the morphology of the nanocolumns. Selective area growth has been successful performed on GaN templates with different orientation or polarity; GaN(0001)/sapphire, GaN(0001)/AlN/Si, GaN(000- 1)/Si and GaN(11-20)/sapphire. Ordered nanocolumns exhibit a high crystal quality, and a higher thermal stability (lower thermal decomposition) than the compact layers of the same material. Ordered nanocolumns based on III nitrides have a clear application in optoelectronics, mainly for white light nanoemitters. However, this Thesis proposes them as an alternative to compact layers and self-assembled nanocolumns in sensor applications. Self-assembled GaN nanocolumns are very appealing for sensor applications, due to their large surface/volume ratio. However, their large dispersion in heights and diameters are a problem in terms of processing and operation of real devices. In this aspect, ordered nanocolumns are more robust and homogeneous, keeping the large surface/volume ratio. As first experimental evidence of their sensor capabilities, ordered nanocolumns have been studied regarding their photoluminiscence on air and vacuum ambient. A big drop in the intensity is observed when the nanocolumns are exposed to air (probably because of the oxygen photo-adsortion), as was already reported in the case of self-assembled nanocolumns. This opens the way to future sensors based on ordered III nitrides nanocolumns.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The basics of the self-assembled growth of GaN nanorods on Si(111) are reviewed. Morphology differences and optical properties are compared to those of GaN layers grown directly on Si(111). The effects of the growth temperature on the In incorporation in self-assembled InGaN nanorods grown on Si(111) is described. In addition, the inclusion of InGaN quantum disk structures into selfassembled GaN nanorods show clear confinement effects as a function of the quantum disk thickness. In order to overcome the properties dispersion and the intrinsic inhomogeneous nature of the self-assembled growth, the selective area growth of GaN nanorods on both, c-plane and a-plane GaN on sapphire templates, is addressed, with special emphasis on optical quality and morphology differences. The analysis of the optical emission from a single InGaN quantum disk is shown for both polar and non-polar nanorod orientations

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of the environment on the optical properties of self-assembled In0.5Ga0.5As surface quantum dots is studied as a function of different ambient conditions for sensing applications. Their room temperature photoluminescence (PL) quenches under vacuum and decreases strongly under dry O2 or N2 environments. Nevertheless, they have a strong signal at 1.55 lm in air or in a wet atmosphere. The presence of water molecules in the environment improves the PL intensity likely due to its polar character and therefore its easier adsorption by the surface dangling bonds, leading to a suppression of the non-radiative recombination centers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It has been proposed that the use of self-assembled quantum dot (QD) arrays can break the Shockley-Queisser efficiency limit by extending the absorption of solar cells into the low-energy photon range while preserving their output voltage. This would be possible if the infrared photons are absorbed in the two sub-bandgap QD transitions simultaneously and the energy of two photons is added up to produce one single electron-hole pair, as described by the intermediate band model. Here, we present an InAs/Al 0.25Ga 0.75As QD solar cell that exhibits such electrical up-conversion of low-energy photons. When the device is monochromatically illuminated with 1.32 eV photons, open-circuit voltages as high as 1.58 V are measured (for a total gap of 1.8 eV). Moreover, the photocurrent produced by illumination with photons exciting the valence band to intermediate band (VB-IB) and the intermediate band to conduction band (IB-CB) transitions can be both spectrally resolved. The first corresponds to the QD inter-band transition and is observable for photons of energy mayor que 1 eV, and the later corresponds to the QD intra-band transition and peaks around 0.5 eV. The voltage up-conversion process reported here for the first time is the key to the use of the low-energy end of the solar spectrum to increase the conversion efficiency, and not only the photocurrent, of single-junction photovoltaic devices. In spite of the low absorption threshold measured in our devices - 0.25 eV - we report open-circuit voltages at room temperature as high as 1.12 V under concentrated broadband illumination.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have studied the adsorption of two structurally similar forms of hemoglobin (met-Hb and HbCO) to a hydrophobic self-assembled methyl-terminated thiol monolayer on a gold surface, by using a Quartz Crystal Microbalance (QCM) technique. This technique allows time-resolved simultaneous measurements of changes in frequency (f) (c.f. mass) and energy dissipation (D) (c.f. rigidity/viscoelastic properties) of the QCM during the adsorption process, which makes it possible to investigate the viscoelastic properties of the different protein layers during the adsorption process. Below the isoelectric points of both met-Hb and HbCO, the ΔD vs. Δf graphs displayed two phases with significantly different slopes, which indicates two states of the adsorbed proteins with different visco-elastic properties. The slope of the first phase was smaller than that of the second phase, which indicates that the first phase was associated with binding of a more rigidly attached, presumably denatured protein layer, whereas the second phase was associated with formation of a second layer of more loosely bound proteins. This second layer desorbed, e.g., upon reduction of Fe3+ of adsorbed met-Hb and subsequent binding of carbon monoxide (CO) forming HbCO. Thus, the results suggest that the adsorbed proteins in the second layer were in a native-like state. This information could only be obtained from simultaneous, time-resolved measurements of changes in both D and f, demonstrating that the QCM technique provides unique information about the mechanisms of protein adsorption to solid surfaces.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cartilage matrix protein (CMP) is the prototype of the newly discovered matrilin family, all of which contain von Willebrand factor A domains. Although the function of matrilins remain unclear, we have shown that, in primary chondrocyte cultures, CMP (matrilin-1) forms a filamentous network, which is made up of two types of filaments, a collagen-dependent one and a collagen-independent one. In this study, we demonstrate that the collagen-independent CMP filaments are enriched in pericellular compartments, extending directly from chondrocyte membranes. Their morphology can be distinguished from that of collagen filaments by immunogold electron microscopy, and mimicked by that of self-assembled purified CMP. The assembly of CMP filaments can occur from transfection of a wild-type CMP transgene alone in skin fibroblasts, which do not produce endogenous CMP. Conversely, assembly of endogenous CMP filaments by chondrocytes can be inhibited specifically by dominant negative CMP transgenes. The two A domains within CMP serve essential but different functions during network formation. Deletion of the A2 domain converts the trimeric CMP into a mixture of monomers, dimers, and trimers, whereas deletion of the A1 domain does not affect the trimeric configuration. This suggests that the A2 domain modulates multimerization of CMP. Absence of either A domain from CMP abolishes its ability to form collagen-independent filaments. In particular, Asp22 in A1 and Asp255 in A2 are essential; double point mutation of these residues disrupts CMP network formation. These residues are part of the metal ion–dependent adhesion sites, thus a metal ion–dependent adhesion site–mediated adhesion mechanism may be applicable to matrilin assembly. Taken together, our data suggest that CMP is a bridging molecule that connects matrix components in cartilage to form an integrated matrix network.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Infection of mucosal epithelium by papillomaviruses is responsible for the induction of genital and oral warts and plays a critical role in the development of human cervical and oropharyngeal cancer. We have employed a canine model to develop a systemic vaccine that completely protects against experimentally induced oral mucosal papillomas. The major capsid protein, L1, of canine oral papillomavirus (COPV) was expressed in Sf9 insect cells in native conformation. L1 protein, which self-assembled into virus-like particles, was purified on CsCl gradients and injected intradermally into the foot pad of beagles. Vaccinated animals developed circulating antibodies against COPV and became completely resistant to experimental challenge with COPV. Successful immunization was strictly dependent upon native L1 protein conformation and L1 type. Partial protection was achieved with as little as 0.125 ng of L1 protein, and adjuvants appeared useful for prolonging the host immune response. Serum immunoglobulins passively transferred from COPV L1-immunized beagles to naive beagles conferred protection from experimental infection with COPV. Our results indicate the feasibility of developing a human vaccine to prevent mucosal papillomas, which can progress to malignancy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have used self-assembled purines and pyrimidines on planar gold surfaces and on gold-coated atomic force microscope (AFM) tips to directly probe intermolecular hydrogen bonds. Electron spectroscopy for chemical analysis (ESCA) and thermal programmed desorption (TPD) measurements of the molecular layers suggested monolayer coverage and a desorption energy of about 25 kcal/mol. Experiments were performed under water, with all four DNA bases immobilized on AFM tips and flat surfaces. Directional hydrogen-bonding interaction between the tip molecules and the surface molecules could be measured only when opposite base-pair coatings were used. The directional interactions were inhibited by excess nucleotide base in solution. Nondirectional van der Waals forces were present in all other cases. Forces as low as two interacting base pairs have been measured. With coated AFM tips, surface chemistry-sensitive recognition atomic force microscopy can be performed.