955 resultados para Rotating Cylinders


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado apresentada à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Psicologia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

How do visual form and motion processes cooperate to compute object motion when each process separately is insufficient? A 3D FORMOTION model specifies how 3D boundary representations, which separate figures from backgrounds within cortical area V2, capture motion signals at the appropriate depths in MT; how motion signals in MT disambiguate boundaries in V2 via MT-to-Vl-to-V2 feedback; how sparse feature tracking signals are amplified; and how a spatially anisotropic motion grouping process propagates across perceptual space via MT-MST feedback to integrate feature-tracking and ambiguous motion signals to determine a global object motion percept. Simulated data include: the degree of motion coherence of rotating shapes observed through apertures, the coherent vs. element motion percepts separated in depth during the chopsticks illusion, and the rigid vs. non-rigid appearance of rotating ellipses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

How do visual form and motion processes cooperate to compute object motion when each process separately is insufficient? Consider, for example, a deer moving behind a bush. Here the partially occluded fragments of motion signals available to an observer must be coherently grouped into the motion of a single object. A 3D FORMOTION model comprises five important functional interactions involving the brain’s form and motion systems that address such situations. Because the model’s stages are analogous to areas of the primate visual system, we refer to the stages by corresponding anatomical names. In one of these functional interactions, 3D boundary representations, in which figures are separated from their backgrounds, are formed in cortical area V2. These depth-selective V2 boundaries select motion signals at the appropriate depths in MT via V2-to-MT signals. In another, motion signals in MT disambiguate locally incomplete or ambiguous boundary signals in V2 via MT-to-V1-to-V2 feedback. The third functional property concerns resolution of the aperture problem along straight moving contours by propagating the influence of unambiguous motion signals generated at contour terminators or corners. Here, sparse “feature tracking signals” from, e.g., line ends, are amplified to overwhelm numerically superior ambiguous motion signals along line segment interiors. In the fourth, a spatially anisotropic motion grouping process takes place across perceptual space via MT-MST feedback to integrate veridical feature-tracking and ambiguous motion signals to determine a global object motion percept. The fifth property uses the MT-MST feedback loop to convey an attentional priming signal from higher brain areas back to V1 and V2. The model's use of mechanisms such as divisive normalization, endstopping, cross-orientation inhibition, and longrange cooperation is described. Simulated data include: the degree of motion coherence of rotating shapes observed through apertures, the coherent vs. element motion percepts separated in depth during the chopsticks illusion, and the rigid vs. non-rigid appearance of rotating ellipses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis I present the work done during my PhD. The Thesis is divided into two parts; in the first one I present the study of mesoscopic quantum systems whereas in the second one I address the problem of the definition of Markov regime for quantum system dynamics. The first work presented is the study of vortex patterns in (quasi) two dimensional rotating Bose Einstein condensates (BECs). I consider the case of an anisotropy trapping potential and I shall show that the ground state of the system hosts vortex patterns that are unstable. In a second work I designed an experimental scheme to transfer entanglement from two entangled photons to two BECs. This work is meant to propose a feasible experimental set up to bring entanglement from microscopic to macroscopic systems for both the study of fundamental questions (quantum to classical transition) and technological applications. In the last work of the first part another experimental scheme is presented in order to detect coherences of a mechanical oscillator which is assumed to have been previously cooled down to the quantum regime. In this regime in fact the system can rapidly undergo decoherence so that new techniques have to be employed in order to detect and manipulate their states. In the scheme I propose a micro-mechanical oscillator is coupled to a BEC and the detection is performed by monitoring the BEC with a negligible back-action on the cantilever. In the second part of the thesis I give a definition of Markov regime for open quantum dynamics. The importance of such definition comes from both the mathematical description of the system dynamics and from the understanding of the role played by the environment in the evolution of an open system. In the Markov regime the mathematical description can be simplified and the role of the environment is a passive one.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present theoretical, numerical, and experimental analyses on the non-linear dynamic behavior of superparamagnetic beads exposed to a periodic array of micro-magnets and an external rotating field. The agreement between theoretical and experimental results revealed that non-linear magnetic forcing dynamics are responsible for transitions between phase-locked orbits, sub-harmonic orbits, and closed orbits, representing different mobility regimes of colloidal beads. These results suggest that the non-linear behavior can be exploited to construct a novel colloidal separation device that can achieve effectively infinite separation resolution for different types of beads, by exploiting minor differences in their bead's properties. We also identify a unique set of initial conditions, which we denote the "devil's gate" which can be used to expeditiously identify the full range of mobility for a given bead type.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability to manipulate small fluid droplets, colloidal particles and single cells with the precision and parallelization of modern-day computer hardware has profound applications for biochemical detection, gene sequencing, chemical synthesis and highly parallel analysis of single cells. Drawing inspiration from general circuit theory and magnetic bubble technology, here we demonstrate a class of integrated circuits for executing sequential and parallel, timed operations on an ensemble of single particles and cells. The integrated circuits are constructed from lithographically defined, overlaid patterns of magnetic film and current lines. The magnetic patterns passively control particles similar to electrical conductors, diodes and capacitors. The current lines actively switch particles between different tracks similar to gated electrical transistors. When combined into arrays and driven by a rotating magnetic field clock, these integrated circuits have general multiplexing properties and enable the precise control of magnetizable objects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monte Carlo calculations of the nuclear magnetic relaxation rate in a disordered metal–hydrogen system having a distribution of jump rates are reported. The calculations deal specifically with the spin-locked rotating-frame relaxation time T1ρ. The results demonstrate that the temperature variation of the rate is only weakly dependent on the distribution and it is therefore unlikely that the jump rate distribution can be extracted from relaxation measurements in which temperature is the main variable. It is shown that the alternative of measuring the relaxation rate over a wide range of spin-locking field strengths at a constant temperature can lead to an evaluation of the distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vacuum Arc Remelting (VAR) is the accepted method for producing homogeneous, fine microstructures that are free of inclusions required for rotating grade applications. However, as ingot sizes are increasing INCONEL 718 becomes increasingly susceptible to defects such as freckles, tree rings, and white spots increases for large diameter billets. Therefore, predictive models of these defects are required to allow optimization of process parameters. In this paper, a multiscale and multi-physics model is presented to predict the development of microstructures in the VAR ingot during solidification. At the microscale, a combined stochastic nucleation approach and finite difference solution of the solute diffusion is applied in the semi-solid zone of the VAR ingot. The micromodel is coupled with a solution of the macroscale heat transfer, fluid flow and electromagnetism in the VAR process through the temperature, pressure and fluid flow fields. The main objective of this study is to achieve a better understanding of the formation of the defects in VAR by quantifying the influence of VAR processing parameters on grain nucleation and dendrite growth. In particular, the effect of different ingot growth velocities on the microstructure formation was investigated. It was found that reducing the velocity produces significantly more coarse grains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Developing temperature fields in frozen cheese sauce undergoing microwave heating were simulated and measured. Two scenarios were investigated: a centric and offset placement on the rotating turntable. Numerical modeling was performed using a dedicated electromagnetic Finite Difference Time Domain (FDTD) module that was two-way coupled to the PHYSICA multiphysics package. Two meshes were used: the food material and container were meshed for the heat transfer and the microwave oven cavity and waveguide were meshed for the microwave field. Power densities obtained on the structured FDTD mesh were mapped onto the unstructured finite volume method mesh for each time-step/turntable position. On heating for each specified time-step the temperature field was mapped back onto the FDTD mesh and the electromagnetic properties were updated accordingly. Changes in thermal/electric properties associated with the phase transition were fully accounted for as well as heat losses from product to cavity. Detailed comparisons were carried out for the centric and offset placements, comparing experimental temperature profiles during microwave thawing with those obtained by numerical simulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are two major types of erosion testing devices that are used throughout the world for quantifying particle impact erosion against a solid surface. The first of these uses pressurised air to accelerate abrasive particles through a nozzle so that they impinge upon a target specimen. The second adopts a rotating disc to accelerate abrasive particles using the centripetal effect so that they impinge upon a series of targets arranged around the periphery of the disc. This paper reports the findings of a collaborative project that was designed to compare the performance and results obtained from a rig of each of the two types mentioned above. The sand blast type rig was provided by The Department of Powder Science Technology (POSTEC) at The Telemark Technological Research and Development Centre (TEL-TEK), Porsgrunn, Norway while the centripetal effect accelerator was provided by The Wolfson Centre for Bulk Solids Handling Technology, University of Greenwich, London, UK. The test programme included tests against a wide range of materials that are commonly used in pneumatic handling facilities. (Pneumatic handling is a means of conveying and transporting powders and granular solid materials in bulk in industrial process plant, through pipelines using a gas as the carrier medium.) Olivine sand was used as the abrasive and it was projected against the test specimens at velocities and concentrations commensurate with those seen in pneumatic conveyors. In all instances the materials used in the test programme were taken from the same batch so that scatter of experimental results due to specimen variation was minimised. The paper contains a series of recommendations for erosion testing equipment. A discussion based on the results and their applicability to the prediction of wear in pneumatic conveyors concludes the paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gas-blast and centrifugal-accelerator testers are the two most commonly used erosion testers. An experimental and analytical study was made of the effect of particle characteristics (size, shape and concentration) on particle dynamics in each of these testers. Analysis showed that in the gas-blast tester both particle velocity and the dispersion angle of the particle jet were relatively sensitive to the particle characteristics. Particle characteristics, within the ranges studied, had little influence in the centrifugal accelerator tester. Consequently, during an erosion test, the range of particle velocities and dispersion angles in the gas-blast tester ismuch wider than in the centrifugal-accelerator tester. It was concluded that the centrifugal-accelerator tester gave closer control of the important erosion test parameters and therefore more consistent erosion test measurements. However, one drawback of the centrifugal-accelerator tester is the need to account for erosion effects associated with the impact of rotating particles, an inherent feature of this tester.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Presented is a study that expands the body of knowledge on the effect of in-cycle speed fluctuations on performance of small engines. It uses the engine and drivetrain models developed previously by Callahan, et al. (1) to examine a variety of engines. The predicted performance changes due to drivetrain effects are shown in each case, and conclusions are drawn from those results. The single-cylinder, high performance four-stroke engine showed significant changes in predicted performance compared to the prediction with zero speed fluctuation in the model. Measured speed fluctuations from a firing Yamaha YZ426 engine were applied to the simulation in addition to data from a simple free mass model. Both methods predicted similar changes in performance. The multiple-cylinder, high performance two-stroke engine also showed significant changes in performance depending on the firing configuration. With both engines, the change in performance diminished with increasing mean engine speed. The low output, single-cylinder two-stroke engine simulation showed only a negligible change in performance, even with high amplitude speed fluctuations. Because the torque versus engine speed characteristic for the engine was so flat, this was expected. The cross-charged, multi-cylinder two-stroke engine also showed only a negligible change in performance. In this case, the combination of a relatively high inertia rotating assembly and the multiple cylinder firing events within the revolution smoothing the torque pulsations reduced the speed fluctuation amplitude itself.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Presented is a study that expands the body of knowledge on the effect of in-cycle speed fluctuations on performance of small engines. It uses the methods developed previously by Callahan, et al. (1) to examine a variety of two-stroke engines and one four-stroke engine. The two-stroke engines were: a high performance single-cylinder, a low performance single-cylinder, a high performance multi-cylinder, and a medium performance multi-cylinder. The four-stroke engine was a high performance single-cylinder unit. Each engine was modeled in Virtual Engines, which is a fully detailed one-dimensional thermodynamic engine simulator. Measured or predicted in-cycle speed data were input into the engine models. Predicted performance changes due to drivetrain effects are shown in each case, and conclusions are drawn from those results. The simulations for the high performance single-cylinder two-stroke engine predicted significant in-cycle crankshaft speed fluctuation amplitudes and significant changes in performance when the fluctuations were input into the engine model. This was validated experimentally on a firing test engine based on a Yamaha YZ250. The four-stroke engine showed significant changes in predicted performance compared to the prediction with zero speed fluctuation assumed in the model. Measured speed fluctuations from a firing Yamaha YZ400F engine were applied to the simulation in addition to data from a simple free mass model. Both methods predicted similar fluctuation profiles and changes in performance. It is shown that the gear reduction between the crankshaft and clutch allowed for this similar behavior. The multi-cylinder, high performance two-stroke engine also showed significant changes in performance, in this case depending on the firing configuration. The low output two-stroke engine simulation showed only a negligible change in performance in spite of high amplitude speed fluctuations. This was due to its flat torque versus speed characteristic. The medium performance multi-cylinder two-stroke engine also showed only a negligible change in performance, in this case due to a relatively high inertia rotating assembly and multiple cylinder firing events within the revolution. These smoothed the net torque pulsations and reduced the amplitude of the speed fluctuation itself.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rimming ?ow of a power-law ?uid in the inner surface of a horizontal rotating cylinder is investigated. Exploiting the fact that the liquid layer is thin, the simplest lubrication theory is applied. The generalized run-off condition for the steady-state ?ow of the power-law liquid is derived. In the bounds implied by this condition, ?lm thickness admits a continuous solution. In the supercritical case when the mass of non-Newtonian liquid exceeds a certain value or the speed of rotation is less than an indicated limit, a discontinuous solution is possible and a hydraulic jump may occur in the steady-state regime. The location and height of the hydraulic jump for the power-law liquid is determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rimming flow on the inner surface of a horizontal rotating cylinder is investigated. Using a scale analysis, a theoretical description is obtained for steady-state non-Newtonian flow. Simple lubrication theory is applied since the Reynolds number is small and the liquid film is thin. Since the Deborah number is very small the flow is viscometric. The shear-thinning number, which characterizes the shear-thinning effect, may be small or large. A general constitutive law for this kind of flow requires only a single function relating shear stress and shear rate that corresponds to a generalized Newtonian liquid. For this case the run-off condition for rimming flow is derived. Provided the run-off condition is satisfied, the existence of a continuous steady-state solution is proved. The rheological models, which show Newtonian behavior at low shear rates with transition to power-law shear thinning at moderate shear rates, are considered. Numerical results are carried out for the Carreau and Ellis models, which exhibit Newtonian behavior near the free surface and power-law behavior near the wall of the rotating cylinder.