Magnetophoretic circuits for digital control of single particles and cells.


Autoria(s): Lim, B; Reddy, V; Hu, X; Kim, K; Jadhav, M; Abedini-Nassab, R; Noh, YW; Lim, YT; Yellen, BB; Kim, C
Cobertura

England

Data(s)

14/05/2014

Resumo

The ability to manipulate small fluid droplets, colloidal particles and single cells with the precision and parallelization of modern-day computer hardware has profound applications for biochemical detection, gene sequencing, chemical synthesis and highly parallel analysis of single cells. Drawing inspiration from general circuit theory and magnetic bubble technology, here we demonstrate a class of integrated circuits for executing sequential and parallel, timed operations on an ensemble of single particles and cells. The integrated circuits are constructed from lithographically defined, overlaid patterns of magnetic film and current lines. The magnetic patterns passively control particles similar to electrical conductors, diodes and capacitors. The current lines actively switch particles between different tracks similar to gated electrical transistors. When combined into arrays and driven by a rotating magnetic field clock, these integrated circuits have general multiplexing properties and enable the precise control of magnetizable objects.

Formato

3846 - ?

Identificador

http://www.ncbi.nlm.nih.gov/pubmed/24828763

ncomms4846

Nat Commun, 2014, 5 pp. 3846 - ?

http://hdl.handle.net/10161/8867

2041-1723

Idioma(s)

ENG

Relação

Nat Commun

10.1038/ncomms4846

Palavras-Chave #Colloids #Computers #Hydrodynamics #Magnets #Nanoparticles #Single-Cell Analysis
Tipo

Journal Article