979 resultados para Root canal therapy
Resumo:
Nanoparticle contrast agents offer the potential to significantly improve existing methods of cancer diagnosis and treatment. Advantages include biocompatibility, selective accumulation in tumor cells, and reduced toxicity. Considerable research is underway into the use of nanoparticles as enhancement agents for radiation therapy and photodynamic therapy, where they may be used to deliver treatment agents, produce localized enhancements in radiation dose and selectively target tumor cells for localized damage. This paper reviews the current status of nanoparticles for cancer treatment and presents preliminary results of a pilot study investigating titanium dioxide nanoparticles for dual-mode enhancement of computed tomography (CT) imaging and kilovoltage radiation therapy. Although titanium dioxide produced noticeable image contrast enhancement in the CT scans, more sensitive detectors are needed to determine whether the nanoparticles can also produce localized dose enhancement for targeted radiation therapy.
Resumo:
While genomics provide important information about the somatic genetic changes, and RNA transcript profiling can reveal important expression changes that correlate with outcome and response to therapy, it is the proteins that do the work in the cell. At a functional level, derangements within the proteome, driven by post-translational and epigenetic modifications, such as phosphorylation, is the cause of a vast majority of human diseases. Cancer, for instance, is a manifestation of deranged cellular protein molecular networks and cell signaling pathways that are based on genetic changes at the DNA level. Importantly, the protein pathways contain the drug targets in signaling networks that govern overall cellular survival, proliferation, invasion and cell death. Consequently, the promise of proteomics resides in the ability to extend analysis beyond correlation to causality. A critical gap in the information knowledge base of molecular profiling is an understanding of the ongoing activity of protein signaling in human tissue: what is activated and “in use” within the human body at any given point in time. To address this gap, we have invented a new technology, called reverse phase protein microarrays, that can generate a functional read-out of cell signaling networks or pathways for an individual patient obtained directly from a biopsy specimen. This “wiring diagram” can serve as the basis for both, selection of a therapy and patient stratification.
Resumo:
Toxicity is a major concern for anti-neoplastic drugs, with much of the existing pharmacopoeia being characterized by a very narrow therapeutic index. 'Network-targeted' combination therapy is a promising new concept in cancer therapy, whereby therapeutic index might be improved by targeting multiple nodes in a cell's signaling network, rather than a single node. Here, we examine the potential of this novel approach, illustrating how therapeutic benefit could be achieved with smaller doses of the necessary agents.
Resumo:
BRAF is a major oncoprotein and oncogenic mutations in BRAF are found in a significant number of cancers, including melanoma, thyroid cancer, colorectal cancer and others. Consequently, BRAF inhibitors have been developed as treatment options for cancers with BRAF mutations which have shown some success in improving patient outcomes in clinical trials. Development of resistance to BRAF kinase inhibitors is common, however, and overcoming this resistance is an area of significant concern for clinicians, patients and researchers alike. In this review, we identify the mechanisms of BRAF kinase inhibitor resistance and discuss the implications for strategies to overcome this resistance in the context of new approaches such as multi-kinase targeted therapies and emerging RNA interference based technologies.
Resumo:
Introduction This investigation aimed to assess the consistency and accuracy of radiation therapists (RTs) performing cone beam computed tomography (CBCT) alignment to fiducial markers (FMs) (CBCTFM) and the soft tissue prostate (CBCTST). Methods Six patients receiving prostate radiation therapy underwent daily CBCTs. Manual alignment of CBCTFM and CBCTST was performed by three RTs. Inter-observer agreement was assessed using a modified Bland–Altman analysis for each alignment method. Clinically acceptable 95% limits of agreement with the mean (LoAmean) were defined as ±2.0 mm for CBCTFM and ±3.0 mm for CBCTST. Differences between CBCTST alignment and the observer-averaged CBCTFM (AvCBCTFM) alignment were analysed. Clinically acceptable 95% LoA were defined as ±3.0 mm for the comparison of CBCTST and AvCBCTFM. Results CBCTFM and CBCTST alignments were performed for 185 images. The CBCTFM 95% LoAmean were within ±2.0 mm in all planes. CBCTST 95% LoAmean were within ±3.0 mm in all planes. Comparison of CBCTST with AvCBCTFM resulted in 95% LoA of −4.9 to 2.6, −1.6 to 2.5 and −4.7 to 1.9 mm in the superior–inferior, left–right and anterior–posterior planes, respectively. Conclusions Significant differences were found between soft tissue alignment and the predicted FM position. FMs are useful in reducing inter-observer variability compared with soft tissue alignment. Consideration needs to be given to margin design when using soft tissue matching due to increased inter-observer variability. This study highlights some of the complexities of soft tissue guidance for prostate radiation therapy.
Resumo:
Resection of musculoskeletal sarcoma can result in large bone defects where regeneration is needed in a quantity far beyond the normal potential of self-healing. In many cases, these defects exhibit a limited intrinsic regenerative potential due to an adjuvant therapeutic regimen, seroma, or infection. Therefore, reconstruction of these defects is still one of the most demanding procedures in orthopaedic surgery. The constraints of common treatment strategies have triggered a need for new therapeutic concepts to design and engineer unparalleled structural and functioning bone grafts. To satisfy the need for long-term repair and good clinical outcome, a paradigm shift is needed from methods to replace tissues with inert medical devices to more biological approaches that focus on the repair and reconstruction of tissue structure and function. It is within this context that the field of bone tissue engineering can offer solutions to be implemented into surgical therapy concepts after resection of bone and soft tissue sarcoma. In this paper we will discuss the implementation of tissue engineering concepts into the clinical field of orthopaedic oncology.
Resumo:
Background As financial constraints can be a barrier to accessing HIV antiretroviral therapy (ART), we argue for the removal of copayment requirements from HIV medications in South Australia. Methods Using a simple mathematical model informed by available behavioural and biological data and reflecting the HIV epidemiology in South Australia, we calculated the expected number of new HIV transmissions caused by persons who are not currently on ART compared with transmissions for people on ART. The extra financial investment required to cover the copayments to prevent an HIV infection was compared with the treatment costs saved due to averting HIV infections. Results It was estimated that one HIV infection is prevented per year for every 31.4 persons (median, 24.0–42.7 interquartile range (IQR)) who receive treatment. By considering the incremental change in costs and outcomes of a change in program from the current status quo, it would cost the health sector $17 860 per infection averted (median, $13 651–24 287 IQR) if ART is provided as a three-dose, three-drug combination without requirements for user-pay copayments. Conclusions The costs of removing copayment fees for ART are less than the costs of treating extra HIV infections that would result under current conditions. Removing the copayment requirement for HIV medication would be cost-effective from a governmental perspective.
Resumo:
Engineers must have deep and accurate conceptual understanding of their field and Concept inventories (CIs) are one method of assessing conceptual understanding and providing formative feedback. Current CI tests use Multiple Choice Questions (MCQ) to identify misconceptions and have undergone reliability and validity testing to assess conceptual understanding. However, they do not readily provide the diagnostic information about students’ reasoning and therefore do not effectively point to specific actions that can be taken to improve student learning. We piloted the textual component of our diagnostic CI on electrical engineering students using items from the signals and systems CI. We then analysed the textual responses using automated lexical analysis software to test the effectiveness of these types of software and interviewed the students regarding their experience using the textual component. Results from the automated text analysis revealed that students held both incorrect and correct ideas for certain conceptual areas and provided indications of student misconceptions. User feedback also revealed that the inclusion of the textual component is helpful to students in assessing and reflecting on their own understanding.
Resumo:
Introduction The multifactorial nature of clinical skills development makes assessment of undergraduate radiation therapist competence level by clinical mentors challenging. A recent overhaul of the clinical assessment strategy at Queensland University of Technology has moved away from the high-stakes Observed Structured Clinical Examination (OSCE) to encompass a more continuous measure of competence. This quantitative study aimed to gather stakeholder evidence to inform development of standards by which to measure student competence for a range of levels of progression. Methods A simple anonymous questionnaire was distributed to all Queensland radiation therapists. The tool asked respondents to assign different levels of competency with a range of clinical tasks to different levels of student. All data were anonymous and was combined for analysis using Microsoft Excel. Results Feedback indicated good agreement with tasks that specified amount of direction required and this has been incorporated into the new clinical achievements record that the students need to have signed off. Additional puzzling findings suggested higher expectations with planning tasks than with treatment-based tasks. Conclusion The findings suggest that the amount of direction required by students is a valid indicator of their level and has been adopted into the clinical assessment scheme. Further work will build on this to further define standards of competency for undergraduates.
Resumo:
BACKGROUND Globally there are emerging trends for non-medical health professionals to expand their scope of practice into prescribing. The NPS Prescribing Competencies Framework and the Health Professionals Prescribing Pathway Program are recent initiatives to assist with implementation of prescribing for allied health professionals (AHPs). For AHPs to become prescribers, training programmes must be designed to extend their knowledge of medicines information and medicine management principles with the aim of optimising medicines related outcomes for patients. AIM To explore the understanding and confidence in clinical therapeutic choices for patient management of those AHPs enrolled in the Allied Health Prescribing Training Program Module One: Introduction to clinical therapeutics for prescribers, delivered by Queensland University of Technology, Brisbane. METHOD A pre-post survey was developed to explore key themes around understanding and confidence in selecting therapeutic choices for patients with varying complexities of conditions. Data were collected from participants in week one and 13 of the module via an online survey using a five-point Likert scale (1 = Strongly Agree (SA) to 5 = Strongly Disagree (SD)). RESULTS In the pre-Module survey the AHPs had a limited degree (D/SD) of understanding and confidence regarding the safe and effective use of medicines and appropriate therapeutic choices for managing patients, particularly with complex patients. This improved significantly in the post Module survey (A/SA).
Resumo:
Androgens regulate biological pathways to promote proliferation, differentiation, and survival of benign and malignant prostate tissue. Androgen receptor (AR) targeted therapies exploit this dependence and are used in advanced prostate cancer to control disease progression. Contemporary treatment regimens involve sequential use of inhibitors of androgen synthesis or AR function. Although targeting the androgen axis has clear therapeutic benefit, its effectiveness is temporary, as prostate tumor cells adapt to survive and grow. The removal of androgens (androgen deprivation) has been shown to activate both epithelial-to-mesenchymal transition (EMT) and neuroendocrine transdifferentiation (NEtD) programs. EMT has established roles in promoting biological phenotypes associated with tumor progression (migration/invasion, tumor cell survival, cancer stem cell-like properties, resistance to radiation and chemotherapy) in multiple human cancer types. NEtD in prostate cancer is associated with resistance to therapy, visceral metastasis, and aggressive disease. Thus, activation of these programs via inhibition of the androgen axis provides a mechanism by which tumor cells can adapt to promote disease recurrence and progression. Brachyury, Axl, MEK, and Aurora kinase A are molecular drivers of these programs, and inhibitors are currently in clinical trials to determine therapeutic applications. Understanding tumor cell plasticity will be important in further defining the rational use of androgen-targeted therapies clinically and provides an opportunity for intervention to prolong survival of men with metastatic prostate cancer.
Resumo:
Changes in global climate and land use affect important prolesses from evapotranspiration and groundwater recharge to carbon storage and biochemical cycling. Near surface soil moisture is pivotal to understand the consequences of these changes. However, the dynamic interactions between vegetation and soil moisture remain largely unresolved because it is difficult to monitor and quantify subsurface hydrologic fluxes at relevant scales. Here we use electrical resistivity to monitor the influence of climate and vegetation on root-zone moisture, bridging the gap between remotely-sensed and in-situ point measurements. Our research quantifies large seasonal differences in root-zone moisture dynamics for a forest-grassland ecotone. We found large differences in effective rooting depth and moisture distributions for the two vegetation types. Our results highlight the likely impacts of land transformations on groun ter recharge, streamflow, and land-atmosphere exchanges.