984 resultados para Quantum spin Hall phase
Resumo:
In certain Mott-insulating dimerized antiferromagnets, triplet excitations of the paramagnetic phase display both three-particle and four-particle interactions. When such a magnet undergoes a quantum phase transition into a magnetically ordered state, the three-particle interaction becomes part of the critical theory provided that the lattice ordering wave vector is zero. One microscopic example is the staggered-dimer antiferromagnet on the square lattice, for which deviations from O(3) universality have been reported in numerical studies. Using both symmetry arguments and microscopic calculations, we show that a nontrivial cubic term arises in the relevant order-parameter quantum field theory, and we assess its consequences using a combination of analytical and numerical methods. We also present finite-temperature quantum Monte Carlo data for the staggered-dimer antiferromagnet which complement recently published results. The data can be consistently interpreted in terms of critical exponents identical to that of the standard O(3) universality class, but with anomalously large corrections to scaling. We argue that the cubic interaction of critical triplons, although irrelevant in two spatial dimensions, is responsible for the leading corrections to scaling due to its small scaling dimension.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We present the qualitative differences in the phase transitions of the mono-mode Dicke model in its integrable and chaotic versions. These qualitative differences are shown to be connected to the degree of entanglement of the ground state correlations as measured by the linear entropy. We show that a first order phase transition occurs in the integrable case whereas a second order in the chaotic one. This difference is also reflected in the classical limit: for the integrable case the stable fixed point in phase space undergoes a Hopf type whereas the second one a pitchfork type bifurcation. The calculation of the atomic Wigner functions of the ground state follows the same trends. Moreover, strong correlations are evidenced by its negative parts. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Assuming q-deformed commutation relations for the fermions, an extension of the standard Lipkin Hamiltonian is presented. The usual quasi-spin representation of the standard Lipkin model is also obtained in this q-deformed framework. A variationally obtained energy functional is used to analyse the phase transition associated with the spherical symmetry breaking. The only phase transitions in this q-deformed model are of second order. As an outcome of this analysis a critical parameter is obtained which is dependent on the deformation of the algebra and on the number of particles.
Resumo:
Cubic phase group III-nitrides were grown using RF plasma assisted Molecular Beam Epitaxy on GaAs (001) substrates. High-resolution X-ray diffraction, photoluminescence, cathodoluminescence and photoreflectance measurements were employed to characterize the structural and optical properties of GaN/AlxGa1-xN Multi Quantum Well (MQW) structures, in which both Aluminum content and well widths were varied. The observed quantized states are in agreement with first-principles based theoretical calculations.
Resumo:
Resin solvation properties affect the efficiency of the coupling reactions in solid-phase peptide synthesis. Here we report a novel approach to evaluate resin solvation properties, making use of spin label electron paramagnetic resonance (EPR) spectroscopy. The aggregating VVLGAAIV and ING sequences were assembled in benzhydrylamine-resin with different amino group contents (up to 2.6 mmol/g) to examine the extent of chain association within the beads. These model peptidyl-resins were first labeled at their N-terminus with the amino acid spin label 2,2,6,6-tetramethylpiperidine-N-oxyl-4-amino-4-carboxylic acid (Toac). Their solvation properties in different solvents were estimated, either by bead swelling measurement or by assessing the dynamics of their polymeric matrixes through the analysis of Toac EPR spectra, and were correlated with the yield of the acylation reaction. In most cases the coupling rate was found to depend on bead swelling. Comparatively, the EPR approach was more effective. Line shape analysis allowed the detection of more than one peptide chain population, which influenced the reaction. The results demonstrated the unique potential of EPR spectroscopy not only for improving the yield of peptide synthesis, even in challenging conditions, but also for other relevant polymer-supported methodologies in chemistry and biology.
Resumo:
Single-phase perovskite structure BaZrxTi1-xO3 (BZT) (0.05less than or equal toxless than or equal to0.25) thin films were deposited on Pt-Ti-SiO2-Si substrates by the spin-coating technique. The structural modifications in the thin films were studied using x-ray diffraction and micro-Raman scattering techniques. Lattice parameters calculated from x-ray data indicate an increase in lattice (a axis) with the increasing content of zirconium in these films. Such Zr substitution also result in variations of the phonon mode wave numbers, especially those of lower wave numbers, for BaZrxTi1-xO3 thin films, corroborate to the structural change caused by the zirconium doping. on the other hand, Raman modes persist above structural phase transition, although all optical modes should be Raman inactive in the cubic phase. The origin of these modes must be interpreted as a function of a local breakdown of the cubic symmetry, which could be a result of some kind of disorder. The BZT thin films exhibited a satisfactory dielectric constant close to 181-138, and low dielectric loss tan delta<0.03 at the frequency of 1 kHz. The leakage current density of the BZT thin films was studied at elevated temperatures and the data obey the Schottky emission model. Through this analysis the Schottky barrier height values 0.68, 1.39, and 1.24 eV were estimated to the BZT5, BZT15, and BZT25 thin films, respectively. (C) 2004 American Institute of Physics.
Resumo:
The Gaussian wave-packet phase-space representation is used to show that the expansion in powers of a of the quantum Liouville propagator leads, in the zeroth-order term, to results close to those obtained in the statistical quasiclassical method of Lee and Scully in the Weyl-Wigner picture. It is also verified that, propagating the Wigner distribution along the classical trajectories, the amount of error is less than that coming from propagating the Gaussian distribution along classical trajectories.
Resumo:
This work is a natural continuation of our recent study in quantizing relativistic particles. There it was demonstrated that, by applying a consistent quantization scheme to the classical model of a spinless relativistic particle as well as to the Berezin-Marinov model of a 3 + 1 Dirac particle, it is possible to obtain a consistent relativistic quantum mechanics of such particles. In the present paper, we apply a similar approach to the problem of quantizing the massive 2 + 1 Dirac particle. However, we stress that such a problem differs in a nontrivial way from the one in 3 + 1 dimensions. The point is that in 2 + 1 dimensions each spin polarization describes different fermion species. Technically this fact manifests itself through the presence of a bifermionic constant and of a bifermionic first-class constraint. In particular, this constraint does not admit a conjugate gauge condition at the classical level. The quantization problem in 2 + 1 dimensions is also interesting from the physical viewpoint (e.g., anyons). In order to quantize the model, we first derive a classical formulation in an effective phase space, restricted by constraints and gauges. Then the condition of preservation of the classical symmetries allows us to realize the operator algebra in an unambiguous way and construct an appropriate Hilbert space. The physical sector of the constructed quantum mechanics contains spin-1/2 particles and antiparticles without an infinite number of negative-energy levels, and exactly reproduces the one-particle sector of the 2 + 1 quantum theory of a spinor field.
Resumo:
The spectral principle of Connes and Chamseddine is used as a starting point to define a discrete model for Euclidean quantum gravity. Instead of summing over ordinary geometries, we consider the sum over generalized geometries where topology, metric, and dimension can fluctuate. The model describes the geometry of spaces with a countable number n of points, and is related to the Gaussian unitary ensemble of Hermitian matrices. We show that this simple model has two phases. The expectation value
Resumo:
In this brief article we discuss spin-polarization operators and spin-polarization states of 2 + 1 massive Dirac fermions and find a convenient representation by the help of 4-spinors for their description. We stress that in particular the use of such a representation allows us to introduce the conserved covariant spin operator in the 2 + 1 field theory. Another advantage of this representation is related to the pseudoclassical limit of the theory. Indeed, quantization of the pseudoclassical model of a spinning particle in 2 + 1 dimensions leads to the 4-spinor representation as the adequate realization of the operator algebra, where the corresponding operator of a first-class constraint, which cannot be gauged out by imposing the gauge condition, is just the covariant operator previously introduced in the quantum theory.
Resumo:
The main properties of realistic models for manganites are studied using analytic mean-field approximations and computational numerical methods, focusing on the two-orbital model with electrons interacting through Jahn-Teller (JT) phonons and/or Coulombic repulsions. Analyzing the model including both interactions by the combination of the mean-field approximation and the exact diagonalization method, it is argued that the spin-charge-orbital structure in the insulating phase of the purely JT-phononic model with a large Hund couphng J(H) is not qualitatively changed by the inclusion of the Coulomb interactions. As an important application of the present mean-held approximation, the CE-type antiferromagnetic state, the charge-stacked structure along the z axis, and (3x(2) - r(2))/(3y(2) - r(2))-type orbital ordering are successfully reproduced based on the JT-phononic model with large JH for the half-doped manganite, in agreement with recent Monte Carlo simulation results. Topological arguments and the relevance of the Heisenberg exchange among localized t(2g) spins explains why the inclusion of the nearest-neighbor Coulomb interaction does not destroy the charge stacking structure. It is also verified that the phase-separation tendency is observed both in purely JT-phononic (large JH) and purely Coulombic models in the vicinity of the hole undoped region, as long as realistic hopping matrices are used. This highlights the qualitative similarities of both approaches and the relevance of mixed-phase tendencies in the context of manganites. In addition, the rich and complex phase diagram of the two-orbital Coulombic model in one dimension is presented. Our results provide robust evidence that Coulombic and JT-phononic approaches to manganites are not qualitatively different ways to carry out theoretical calculations, but they share a variety of common features.
Resumo:
We investigate the thermodynamics of an integrable spin ladder model which possesses a free parameter besides rung and leg couplings. The model is exactly solvable by means of the Bethe ansatz and exhibits a phase transition between a gapped and a gapless spin excitation spectrum. The magnetic susceptibility is obtained numerically and its dependence on the anisotropy parameter is determined. The spin gap obtained from the susceptibility curve and the one obtained from the Bethe ansatz equations are in very good agreement. Our results for the magnetic susceptibility fit well the experimental data for the organometallic compounds (5IAP)(2)CuBr4 . 2H(2)O (Landee C. P. et al., Phys. Rev. B, 63 (2001) 100402(R)) Cu-2(C5H12N2)(2)Cl-4 (Hayward C. A., Poilblanc D. and Levy L. P., Phys. Rev. B, 54 (1996) R12649, Chaboussant G. et al., Phys. Rev. Lett., 19 ( 1997) 925; Phys. Rev. B, 55 ( 1997) 3046.) and (C5H12N)(2)CuBr4 (Watson B. C. et al., Phys. Rev. Lett., 86 ( 2001) 5168) in the strong-coupling regime.
Resumo:
We present the zero-temperature phase diagram of the one-dimensional t(2g)-orbital Hubbard model, obtained using the density-matrix renormalization group and Lanczos techniques. Emphasis is given to the case of the electron density n=5 corresponding to five electrons per site, while several other cases for electron densities between n=3 and 6 are also studied. At n=5, our results indicate a first-order transition between a paramagnetic (PM) insulator phase, with power-law slowly decaying correlations, and a fully polarized ferromagnetic (FM) state by tuning the Hund's coupling. The results also suggest a transition from the n=5 PM insulator phase to a metallic regime by changing the electron density, either via hole or electron doping. The behavior of the spin, charge, and orbital correlation functions in the FM and PM states are also described in the text and discussed. The robustness of these two states against varying parameters suggests that they may be of relevance in quasi-one-dimensional Co-oxide materials, or even in higher dimensional cobaltite systems as well.