974 resultados para Protein-fragment Complementation Assay
Resumo:
The partitioning of Green Fluorescent Protein (GFP) in poly(ethylene glycol)/Na-poly(acrylate) aqueous two-phase systems (PEG/NaPA-ATPS) has been investigated. The aqueous two-phase systems are formed by mixing the polymers with a salt and a protein solution. The protein partitioning in the two-phase system was investigated at 25 degrees C. The concentration of the GFP was measured by fluorimetry. It was found that the partitioning of GFP depends on the salt type, pH and concentration of PEG. The data indicates that GFP partitions more strongly to the PEG phase in presence of Na2SO4 relative to NaCl. Furthermore, the GFP partitions more to the PEG phase at higher pH. The partition to the PEG phase is strongly favoured in systems with larger tie-line lengths (i.e. systems with higher polymer concentrations). The molecular weight of PEG is important since the partition coefficient (K) of GFP gradually decreases with increasing PEG size, from K ca. 300-400 for PEG 400 to K equal to 1.19 for PEG 8000. A separation process was developed where GFP was separated from a homogenate in two extraction steps: the GFP is first partitioned to the PEG phase in a PEG 3000/NaPA 8000 system containing 3 wt% Na2SO4, where the K value of GFP was 8. The GFP is then re-extracted to a salt phase formed by mixing the previous top-phase with a Na2SO4 solution. The K-value of GFP in this back-extraction was 0.22. The total recovery based on the start material was 74%. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was the design of a set of benzofuroxan derivatives as antimicrobial agents exploring the physicochemical properties of the related substituents. Topliss` decision tree approach was applied to select the substituent groups. Hierarchical cluster analysis was also performed to emphasize natural clusters and patterns. The compounds were obtained using two synthetic approaches for reducing the synthetic steps as well as improving the yield. The minimal inhibitory concentration method was employed to evaluate the activity against multidrug-resistant Staphylococcus aureus strains. The most active compound was 4-nitro-3-(trifluoromethyl)[N`-(benzofuroxan-5-yl) methylene] benzhydrazide (MIC range 12.7-11.4 mu g/mL), pointing out that the antimicrobial activity was indeed influenced by the hydrophobic and electron-withdrawing property of the substituent groups 3-CF(3) and 4-NO(2), respectively. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The partition of hemoglobin, lysozyme and glucose-6-phospate dehydrogenase (G6PDH) in a novel inexpensive aqueous two-phase system (ATPS) composed by poly(ethylene glycol) (PEG) and sodium polyacrylate (NaPA) has been studied. The effect of NaCl and Na2SO4, pH and PEG molecular size on the partitioning has been studied. At high pH (above 9), hemoglobin partitions strongly to the PEG-phase. Although some precipitation of hemoglobin occurs, high recovery values are obtained particularly for lysozyme and G6PDH. The partitioning forces are dominated by the hydrophobic and electrochemical (salt) effects, since the positively charged lysozyme and negatively charged G6PDH partitions to the non-charged PEG and the strongly negatively charged polyacrylate enriched phase, respectively. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Methods of stabilization and formulation of proteins are important in both biopharmaceutical and biocatalysis industries. Polymers are often used as modifiers of characteristics of biological macromolecules to improve the biochemical activity and stability of proteins or drug bioavailability. Green fluorescent protein (GFP) shows remarkable structural stability and high fluorescence; its stability can be directly related to its fluorescence output, among other characteristics. GFP is stable under increasing temperatures, and its thermal denaturation is highly reproducible. Relative thermal stability was undertaken by incubation of GFP at varying temperatures and GFP fluorescence was used as a reporter for unfolding. At 80 degrees C, DEAE-dextran did not have any effect on GFP fluorescence, indicating that it does not confer stability.
Resumo:
The aim of this study was to validate an agar diffusion method through the parameters linearity, precision and accuracy, to quantify apramycin in soluble powder. The calibration curve of apramycin was constructed by plotting log of concentrations (mu g ml(-1)) versus zone diameter (mm) and shows good linearity in the range of 1.0-4.0 mu g.ml(-1). The precision of the assay was determined by assaying samples at the same day (repeatability - R.S.D. = 2.00%) and on different days (intermediate precision - R.S.D. = 5.06%) and indicate good precision. The accuracy expresses the agreement between the accepted value and the value found. The mean recovery was found to be 100.49 % for apramycin soluble powder. The results indicated that the microbiological assay proposed in this work hold linearity, precision and accuracy being an acceptable alternative method for routine quality control of apramycin in the pharmaceutical dosage form studied.
Resumo:
Papaya (Carica papaya L) fruit has a short shelf life due to fast ripening induced by ethylene, but little is known about the genetic control of ripening and attributes of fruit quality. Therefore, we identified ripening-related genes affected by ethylene using cDNA-AFLP (Amplified Fragment Length Polymorphism of cDNA). Transcript profiling of non-induced and ethylene-induced fruit samples was performed, and 71 differentially expressed genes were identified. Among those genes some involved in ethylene biosynthesis, regulation of transcription, and stress responses or plant defence were found (heat shock proteins, polygalacturonase-inhibiting protein, and acyl-CoA oxidases). Several transcription factors were isolated, and except for a 14-3-3 protein, an AP2 domain-containing factor, a salt-tolerant zinc finger protein, and a suppressor of PhyA-105 1, most of them were negatively affected by ethylene, including fragments of transcripts similar to VRN1, and ethylene responsive factors (ERF). With respect to fruit quality, genes related to cell wall structure or metabolism, volatiles or pigment precursors, and vitamin biosynthesis were also found. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
New rapid first-derivative spectrophotometric (UVDS) and a stability-indicating high performance liquid chromatographic (HPLC) methods were developed, validated and successfully applied in the analysis of loratadine (LT) in tablets and syrups. In the UVDS method, 0.1 M HCl was used as solvent. The measurements were made at 312.4 nm in the first order derivative spectra. The HPLC method was carried out on a RP-18 column with a mobile phase composed of methanol-water-tetrahydrofuran (50:30:20, v/v/v). UV detection was made at 247 nm. For HPLC methods the total analysis time was <3min, adequate for routine quality control of tablets and syrups containing loratadine.
Resumo:
The objective of this study was to compare the responses of the Salmonella/microsome microsuspension assay with the new microplate fluctuation protocol (MPF) for the evaluation of the mutagenic activity of environmental samples. Organic extracts of total particulate atmospheric air samples, surface waters, and effluents were tested in dose-response experiments. The assays were performed with strain TA98 in the absence and presence of S9 mix. Both protocols produced similar results, despite the fact that the maximum score of the MPF is limited to 48 wells, whereas in the regular plate assay it is possible to count up to 1,500 colonies using an automatic counter. Similar sensitivities based on the lowest dose that resulted in a positive response were obtained for both assays. The MPF procedure is less laborious (e.g., all-liquid format, use of multi-channel pipettors) and allows for automation of the pipetting and dispensing steps, thus, reducing time of the analysis which is particularly important in environmental quality monitoring programs or in effect-directed analysis. The results show that the MPF procedure is a promising tool to test environmental samples for mutagenic activity. Environ. Mol. Mutagen. 51:31-38, 2010. (C) 2009 Wiley-Liss, Inc.
Resumo:
The exchange of lipids with cells and other lipoproteins is a crucial process in HDL metabolism and for HDL antiatherogenic function. Here, we tested a practical method to quantify the simultaneous transfer to HDL of phospholipids, free-cholesterol, esterified cholesterol and triacylglycerols and to verify the lipid transfer in patients with coronary artery disease (CAD) or undergoing statin treatment. Twenty-eight control subjects without CAD, 27 with CAD and 25 CAD patients under simvastatin treatment were studied. Plasma samples were incubated with a donor nanoemulsion prepared by ultrasonication of the constituent lipids and labeled with radioactive lipids; % lipids transferred to HDL were quantified in the HDL-containing supernatant after chemical precipitation of non-HDL fractions and the nanoemulsion. The assay was precise and reproducible. Increase of temperature (4-37 A degrees C), of incubation period (5 min to 2 h), of HDL-cholesterol concentration (33-244 mg/dL) and of mass of nanoemulsion lipids (0.075-0.3 mg/mu L) resulted in increased lipid transfer from the nanoemulsion to HDL. In contrast, increasing pH (6.5-8.5) and albumin concentration (3.5-7.0 g/dL) did not affect lipid transfer. There was no difference between CAD and control non-CAD with regard to the lipid transfer, but statin treatment reduced the transfer to HDL of all four lipids. The test herein described is a valid and practical tool for exploring an important aspect of HDL metabolism.
Resumo:
BACKGROUND: Biosurfactant production was investigated using two strains of Bacillus subtilis, one being a reference strain (B. subtilis 1012) and the other a recombinant of this (B. subtilis W1012) made able to produce the green fluorescent protein (GFP). RESULTS: Batch cultivations carried out at different initial levels of glucose (GO) in the presence of 10 g L(-1) casein demonstrated that the reference strain was able to release higher levels of biosurfactants in the medium at 5.0 <= G(0) <= 10 g L(-1) (B(max) = 104-110 mg L(-1)). The recombinant strain exhibited slightly lower levels of biosurfactants(B(max) = 90-104 mg L(-1))but only at higher glucose concentrations (G(0) >= 20 g L(-1)). Under these nutritional conditions, the fluorescence intensity linked to the production of GFP was shown to be associated with the cell concentration even after achievement of the stationary phase. CONCLUSION: The ability of the genetically-modified strain to simultaneously overproduce biosurfactant and GFP even at low biomass concentration makes it an interesting candidate for use as a biological indicator to monitor indirectly the biosurfactant production in bioremediation treatments. (C) 2008 Society of Chemical Industry
Resumo:
Aim of the study: Species of Lychnophora are used in Brazilian folk medicine as analgesic and anti-inflammatory agents. Chlorogenic acid (CGA) and their analogues are important components of polar extracts of these species, as well in several European and Asian medicinal plants. Some of these phenolic compounds display anti-inflammatory effects. In this paper we report the isolation of CGA from Lychnophora salicifolia and its effects on functions involved in neutrophils locomotion. Materials and methods: LC-MS(n) data confirmed the presence of CGA in the plant. Actions of CGA were investigated on neutrophils obtained from peritoneal cavity of Wistar rats (4h after 1% oyster glycogen solution injection; 10 ml), and incubated with vehicle or with 50, 100 or 1000 mu M CGA in presence of lipopolysaccharide from Escherichia coil (LPS, 5 mu g/ml). Nitric oxide (NO; Griess reaction); prostaglandin E(2) (PGE(2)), interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha [TNF-alpha; enzyme-linked immunosorbent assay (EIA)]; protein (flow cytometry) and gene (RT-PCR) expression of L-selectin, beta(2)integrin and platelet-endothelial cell adhesion molecule-1 (PECAM-1) were quantified. In vitro neutrophil adhesion to primary culture of microvascular endothelial cell (PMEC) and neutrophil migration in response to formyl-methionil-leucil-phenilalanine (fMLP, 10(-8)M, Boyden chamber) was determined. Results: CGA treatment did not modify the secretion of inflammatory mediators, but inhibited L-selectin cleavage and reduced beta(2) integrin, independently from its mRNA synthesis, and reduced membrane PECAM-1 expression: inhibited neutrophil adhesion and neutrophil migration induced by fMLP. Conclusions: Based on these findings, we highlight the direct inhibitory actions of CGA on adhesive and locomotion properties of neutrophils, which may contribute to its anti-inflammatory effects and help to explain the use of Lychnophora salicifolia as an anti-inflammatory agent. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Nisin is a natural additive for conservation of food, and can also be used as a therapeutic agent. Nisin inhibits the outgrowth of spores, the growth of a variety of Gram-positive and Grain-negative bacteria. In this paper we present a potentially scalable and cost-effective way to purify commercial and biosynthesized in bioreactor nisin, including simultaneously removal of impurities and contaminants, increasing nisin activity. Aqueous two-phase micellar systems (ATPMS) are considered promising for bioseparation and purification purposes. Triton X-114 was chosen as the as phase-forming surfactant because it is relatively mild to proteins and it also forms two coexisting phases within a convenient temperature range. Nisin activity was determined by the agar diffusion assay utilizing Lactobacillus sake as a sensitive indicator microorganism. Results indicated that nisin partitions preferentially to the micelle rich-phase, despite the surfactant concentration tested, and its antimicrobial activity increases. The successful implementation of this peptide partitioning, from a suspension containing other compounds, represents an important step towards developing a separation method for nisin, and more generally, for other biomolecules of interest. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
A method was optimized for the analysis of omeprazole (OMZ) by ultra-high speed LC with diode array detection using a monolithic Chromolith Fast Gradient RP 18 endcapped column (50 x 2.0 mm id). The analyses were performed at 30 degrees C using a mobile phase consisting of 0.15% (v/v) trifluoroacetic acid (TFA) in water (solvent A) and 0.15% (v/v) TFA in acetonitrile (solvent B) under a linear gradient of 5 to 90% B in 1 min at a flow rate of 1.0 mL/min and detection at 220 nm. Under these conditions, OMZ retention time was approximately 0.74 min. Validation parameters, such as selectivity, linearity, precision, accuracy, and robustness, showed results within the acceptable criteria. The method developed was successfully applied to OMZ enteric-coated pellets, showing that this assay can be used in the pharmaceutical industry for routine QC analysis. Moreover, the analytical conditions established allow for the simultaneous analysis of OMZ metabolites, 5-hydroxyomeprazole and omeprazole sulfone, in the same run, showing that this method can be extended to other matrixes with adequate procedures for sample preparation.
Resumo:
In the protein folding problem, solvent-mediated forces are commonly represented by intra-chain pairwise contact energy. Although this approximation has proven to be useful in several circumstances, it is limited in some other aspects of the problem. Here we show that it is possible to achieve two models to represent the chain-solvent system. one of them with implicit and other with explicit solvent, such that both reproduce the same thermodynamic results. Firstly, lattice models treated by analytical methods, were used to show that the implicit and explicitly representation of solvent effects can be energetically equivalent only if local solvent properties are time and spatially invariant. Following, applying the same reasoning Used for the lattice models, two inter-consistent Monte Carlo off-lattice models for implicit and explicit solvent are constructed, being that now in the latter the solvent properties are allowed to fluctuate. Then, it is shown that the chain configurational evolution as well as the globule equilibrium conformation are significantly distinct for implicit and explicit solvent systems. Actually, strongly contrasting with the implicit solvent version, the explicit solvent model predicts: (i) a malleable globule, in agreement with the estimated large protein-volume fluctuations; (ii) thermal conformational stability, resembling the conformational hear resistance of globular proteins, in which radii of gyration are practically insensitive to thermal effects over a relatively wide range of temperatures; and (iii) smaller radii of gyration at higher temperatures, indicating that the chain conformational entropy in the unfolded state is significantly smaller than that estimated from random coil configurations. Finally, we comment on the meaning of these results with respect to the understanding of the folding process. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The effects of PLC and Pkc inhibitors on Aspergillus nidulans depend on the carbon source. PLC inhibitors Spm and C48/80 delayed the first nuclear division in cultures growing on glucose, but stimulated it in media supplemented with pectin. Less intense were these effects on the mutant transformed with PLC-A gene rupture (AP27). Neomycin also delayed the germination in cultures growing on glucose or pectin; however, on glucose, the nuclear division was inhibited whereas in pectin it was stimulated. These effects were minor in AP27. The effects of Ro-31-8425 and BIM (both Pkc inhibitors) were also opposite for cultures growing on glucose or pectin. On glucose cultures of both strains BIM delayed germination and the first nuclear division, whereas on pectin both parameters were stimulated. Opposite effects were also detected when the cultures were growing on glucose or pectin in the presence of Ro-31-8425.