991 resultados para Positive Solutions
Resumo:
The field of vaccinology was born from the observations by the fathers of vaccination, Edward Jenner and Louis Pasteur, that a permanent, positive change in the way our bodies respond to life-threatening infectious diseases can be obtained by specific challenge with the inactivated infectious agent performed in a controlled manner, avoiding the development of clinical disease upon exposure to the virulent pathogen. Many of the vaccines still in use today were developed on an empirical basis, essentially following the paradigm established by Pasteur, “isolate, inactivate, and inject” the disease-causing microorganism, and are capable of eliciting uniform, long-term immune memory responses that constitute the key to their proven efficacy. However, vaccines for pathogens considered as priority targets of public health concern are still lacking. The literature tends to focus more often on vaccine research problems associated with specific pathogens, but it is increasingly clear that there are common bottlenecks in vaccine research, which need to be solved in order to advance the development of the field as a whole. As part of a group of articles, the objective of the present report is to pinpoint these bottlenecks, exploring the literature for common problems and solutions in vaccine research applied to different situations. Our goal is to stimulate brainstorming among specialists of different fields related to vaccine research and development. Here, we briefly summarize the topics we intend to deal with in this discussion.
Resumo:
This study evaluated whether the use of continuous positive airway pressure (CPAP) in the delivery room alters the need for mechanical ventilation and surfactant during the first 5 days of life and modifies the incidence of respiratory morbidity and mortality during the hospital stay. The study was a multicenter randomized clinical trial conducted in five public university hospitals in Brazil, from June 2008 to December 2009. Participants were 197 infants with birth weight of 1000-1500 g and without major birth defects. They were treated according to the guidelines of the American Academy of Pediatrics (APP). Infants not intubated or extubated less than 15 min after birth were randomized for two treatments, routine or CPAP, and were followed until hospital discharge. The routine (n=99) and CPAP (n=98) infants studied presented no statistically significant differences regarding birth characteristics, complications during the prenatal period, the need for mechanical ventilation during the first 5 days of life (19.2 vs 23.4%, P=0.50), use of surfactant (18.2 vs 17.3% P=0.92), or respiratory morbidity and mortality until discharge. The CPAP group required a greater number of doses of surfactant (1.5 vs 1.0, P=0.02). When CPAP was applied to the routine group, it was installed within a median time of 30 min. We found that CPAP applied less than 15 min after birth was not able to reduce the need for ventilator support and was associated with a higher number of doses of surfactant when compared to CPAP applied as clinically indicated within a median time of 30 min.
Resumo:
Crystal properties, product quality and particle size are determined by the operating conditions in the crystallization process. Thus, in order to obtain desired end-products, the crystallization process should be effectively controlled based on reliable kinetic information, which can be provided by powerful analytical tools such as Raman spectrometry and thermal analysis. The present research work studied various crystallization processes such as reactive crystallization, precipitation with anti-solvent and evaporation crystallization. The goal of the work was to understand more comprehensively the fundamentals, phenomena and utilizations of crystallization, and establish proper methods to control particle size distribution, especially for three phase gas-liquid-solid crystallization systems. As a part of the solid-liquid equilibrium studies in this work, prediction of KCl solubility in a MgCl2-KCl-H2O system was studied theoretically. Additionally, a solubility prediction model by Pitzer thermodynamic model was investigated based on solubility measurements of potassium dihydrogen phosphate with the presence of non-electronic organic substances in aqueous solutions. The prediction model helps to extend literature data and offers an easy and economical way to choose solvent for anti-solvent precipitation. Using experimental and modern analytical methods, precipitation kinetics and mass transfer in reactive crystallization of magnesium carbonate hydrates with magnesium hydroxide slurry and CO2 gas were systematically investigated. The obtained results gave deeper insight into gas-liquid-solid interactions and the mechanisms of this heterogeneous crystallization process. The research approach developed can provide theoretical guidance and act as a useful reference to promote development of gas-liquid reactive crystallization. Gas-liquid mass transfer of absorption in the presence of solid particles in a stirred tank was investigated in order to gain understanding of how different-sized particles interact with gas bubbles. Based on obtained volumetric mass transfer coefficient values, it was found that the influence of the presence of small particles on gas-liquid mass transfer cannot be ignored since there are interactions between bubbles and particles. Raman spectrometry was successfully applied for liquid and solids analysis in semi-batch anti-solvent precipitation and evaporation crystallization. Real-time information such as supersaturation, formation of precipitates and identification of crystal polymorphs could be obtained by Raman spectrometry. The solubility prediction models, monitoring methods for precipitation and empirical model for absorption developed in this study together with the methodologies used gives valuable information for aspects of industrial crystallization. Furthermore, Raman analysis was seen to be a potential controlling method for various crystallization processes.
Resumo:
The context of this study is corporate e-learning, with an explicit focus on how digital learning design can facilitate self-regulated learning (SRL). The field of e-learning is growing rapidly. An increasing number of corporations use digital technology and elearning for training their work force and customers. E-learning may offer economic benefits, as well as opportunities for interaction and communication that traditional teaching cannot provide. However, the evolving variety of digital learning contexts makes new demands on learners, requiring them to develop strategies to adapt and cope with novel learning tools. This study derives from the need to learn more about learning experiences in digital contexts in order to be able to design these properly for learning. The research question targets how the design of an e-learning course influences participants’ self-regulated learning actions and intentions. SRL involves learners’ ability to exercise agency in their learning. Micro-level SRL processes were targeted by exploring behaviour, cognition, and affect/motivation in relation to the design of the digital context. Two iterations of an e-learning course were tested on two groups of participants (N=17). However, the exploration of SRL extends beyond the educational design research perspective of comparing the effects of the changes to the course designs. The study was conducted in a laboratory with each participant individually. Multiple types of data were collected. However, the results presented in this thesis are based on screen observations (including eye tracking) and video-stimulated recall interviews. These data were integrated in order to achieve a broad perspective on SRL. The most essential change evident in the second course iteration was the addition of feedback during practice and the final test. Without feedback on actions there was an observable difference between those who were instruction-directed and those who were self-directed in manipulating the context and, thus, persisted whenever faced with problems. In the second course iteration, including the feedback, this kind of difference was not found. Feedback provided the tipping point for participants to regulate their learning by identifying their knowledge gaps and to explore the learning context in a targeted manner. Furthermore, the course content was consistently seen from a pragmatic perspective, which influenced the participants’ choice of actions, showing that real life relevance is an important need of corporate learners. This also relates to assessment and the consideration of its purpose in relation to participants’ work situation. The rigidity of the multiple choice questions, focusing on the memorisation of details, influenced the participants to adapt to an approach for surface learning. It also caused frustration in cases where the participants’ epistemic beliefs were incompatible with this kind of assessment style. Triggers of positive and negative emotions could be categorized into four levels: personal factors, instructional design of content, interface design of context, and technical solution. In summary, the key design choices for creating a positive learning experience involve feedback, flexibility, functionality, fun, and freedom. The design of the context impacts regulation of behaviour, cognition, as well as affect and motivation. The learners’ awareness of these areas of regulation in relation to learning in a specific context is their ability for design-based epistemic metareflection. I describe this metareflection as knowing how to manipulate the context behaviourally for maximum learning, being metacognitively aware of one’s learning process, and being aware of how emotions can be regulated to maintain volitional control of the learning situation. Attention needs to be paid to how the design of a digital learning context supports learners’ metareflective development as digital learners. Every digital context has its own affordances and constraints, which influence the possibilities for micro-level SRL processes. Empowering learners in developing their ability for design-based epistemic metareflection is, therefore, essential for building their digital literacy in relation to these affordances and constraints. It was evident that the implementation of e-learning in the workplace is not unproblematic and needs new ways of thinking about learning and how we create learning spaces. Digital contexts bring a new culture of learning that demands attitude change in how we value knowledge, measure it, define who owns it, and who creates it. Based on the results, I argue that digital solutions for corporate learning ought to be built as an integrated system that facilitates socio-cultural connectivism within the corporation. The focus needs to shift from designing static e-learning material to managing networks of social meaning negotiation as part of a holistic corporate learning ecology.
Resumo:
Purpose of this study is to clarify the industrial solutions purchasing process from purchaser companies’ point of view. Also customer’s view on value generating aspects and difficulties in purchases will be discussed as well as different purchas-ing entities where customers have ended up in their solution purchases. Current solution literature is mainly concentrated in supplier views and customer perspec-tive has been left without adequate attention. However, knowledge of the customer and the identification of customer need are at the core of a successful solution business. The focus of this thesis is on Finnish companies’ solution purchases that have been realized during last five years. Industrial solutions in this case are facto-ries or other large industrial plants. Industrial solutions’ purchasing process will be opened all the way from discovering the need until the start-up of the plant. Of in-terest is the customer experience of the success of the acquisition and the pur-chaser’s view on good practices allowing a successful procurement project.
Resumo:
Fiber-reinforced composite fixed dental prostheses – Studies of the materials used as pontics University of Turku, Faculty of Medicine, Institute of Dentistry, Department of Biomaterials Science, Finnish Doctoral Program in Oral Sciences – FINDOS, Annales Universitatis Turkuensis, Turku, Finland 2015 Fiber-reinforced composites (FRC), a non-metallic biomaterial, represent a suitable alternative in prosthetic dentistry when used as a component of fixed dental prostheses (FDPs). Some drawbacks have been identified in the clinical performance of FRC restorations, such as delamination of the veneering material and fracture of the pontic. Therefore, the current series of studies were performed to investigate the possibilities of enhancing the mechanical and physical properties of FRC FDPs by improving the materials used as pontics, to then heighten their longevity. Four experiments showed the importance of the pontic design and surface treatment in the performance of FRC FDPs. In the first, the load-bearing capacities of inlay-retained FRC FDPs with pontics of various materials and thicknesses were evaluated. Three different pontic materials were assessed with different FRC framework vertical positioning. Thicker pontics showed increased load-bearing capacities, especially ceramic pontics. A second study was completed investigating the influence of the chemical conditioning of the ridge-lap surface of acrylic resin denture teeth on their bonding to a composite resin. Increased shear bond strength demonstrated the positive influence of the pretreatment of the acrylic surfaces, indicating dissolution of the denture surfaces, and suggesting potential penetration of the monomer systems into the surface of denture teeth. A third study analyzed the penetration depth of different monomer systems on the acrylic resin denture teeth surfaces. The possibility of establishing a durable bond between acrylic pontics and FRC frameworks was demonstrated by the ability of monomers to penetrate the surface of acrylic resin denture teeth, measured by a confocal scanning type microscope. A fourth study was designed to evaluate the load-bearing capacities of FRC FDPs using the findings of the previous three studies. In this case, the performance of pre-shaped acrylic resin denture teeth used as pontics with different composite resins as filling materials was evaluated. The filling material influenced the load-bearing capacities, providing more durable FRC FDPs. It can be concluded that the mechanical and physical properties of FRC FDPs can be improved as has been shown in the development of this thesis. The improvements reported then might provide long lasting prosthetic solutions of this kind, positioning them as potentially permanent rehabilitation treatments. Key words: fiber-reinforced composite, fixed dental prostheses, inlay-retained bridges, adhesion, acrylic resin denture teeth, dental material.
Supplier provided automatic warehouse replenishment solutions in pharmaceutical diagnostics industry
Resumo:
The enterotoxigenic species Staphylococcus aureus, S. hyicus and S. intermedius show very similar characteristics, making their identification through conventional microbiological methods difficult. This study aimed at the development of a Multiplex PCR (mPCR) for the identification of S. aureus, S. intermedius and S. hyicus using the nuc gene as the target sequence. The results obtained suggest that the set of primers used was specific for the three species of Staphylococcus evaluate with a detection limit of 10² CFU.mL-1.
Resumo:
The aim of this study was to assess the contamination of oysters (Crassostrea gigas), harvested in six different regions of the South Bay of Santa Catarina Island, with Coliforms at 45 ºC, Escherichia coli, Vibrio spp., positive coagulase staphylococci, and Salmonella sp. over a period of one year. One hundred eighty oyster samples were collected directly from their culture sites and analyzed. Each sample consisted of a pool of 12 oysters. All of the samples analyzed showed absence of Salmonella, 18 (10%) samples showed presence of Escherichia coli, 15 (8.3%) samples were positive for V. alginolyticus, and Vibriocholerae was detected in 4 samples (2.2%). The counts of positive-coagulase staphylococci varied from <10 to 1.9 x 102 CFU.g-1, whereas the counts of Coliforms at 45 ºC and E. coli ranged from <3 to 1.5 x 102 MPN.g-1 and <3 and 4.3 x 10 MPN.g-1, respectively. Counts of V. parahaemolyticus and V. vulnificus ranged between <3 and 7 MPN.g-1, for both microorganisms. This suggests the need for monitoring these Vibrios contamination in oysters. Based on the results of the microbiological assays, the samples analyzed showed acceptable bacteriological quality, i.e., they were within the parameters established by Brazilian Legislation.
Resumo:
The emergence of depth sensors has made it possible to track – not only monocular cues – but also the actual depth values of the environment. This is especially useful in augmented reality solutions, where the position and orientation (pose) of the observer need to be accurately determined. This allows virtual objects to be installed to the view of the user through, for example, a screen of a tablet or augmented reality glasses (e.g. Google glass, etc.). Although the early 3D sensors have been physically quite large, the size of these sensors is decreasing, and possibly – eventually – a 3D sensor could be embedded – for example – to augmented reality glasses. The wider subject area considered in this review is 3D SLAM methods, which take advantage of the 3D information available by modern RGB-D sensors, such as Microsoft Kinect. Thus the review for SLAM (Simultaneous Localization and Mapping) and 3D tracking in augmented reality is a timely subject. We also try to find out the limitations and possibilities of different tracking methods, and how they should be improved, in order to allow efficient integration of the methods to the augmented reality solutions of the future.
Resumo:
Introduction: Continuous exposition of the peritoneal membrane to conventional dialysis solutions is an important risk factor for inducing structural and functional alterations. Objective: To compare in vitro mouse fibroblast NIH-3T3 cell viability after exposition to a neutral pH dialysis solution in comparison to cells exposed to a standard solution. Methods: Experimental study to compare the effects of a conventional standard or a neutral-pH, low-glucose degradation products peritoneal dialysis solution on the viability of exposed fibroblasts in cell culture. Both solutions were tested in all the commercially available glucose concentrations. Cell viability was evaluated with tetrazolium salt colorimetric assay. Results: Fibroblast viability was significantly superior in the neutral pH solution in comparison to control, in all three glucose concentrations (Optical density in nm-means ± SD: 1.5% 0.295 ± 0.047 vs. 0.372 ± 0.042, p < 0.001; 2.3% 0.270 ± 0.036 vs. 0.337 ± 0.051, p < 0.001; 4.25% 0.284 ± 0.037 vs. 0.332 ± 0.032, p < 0.001; control vs. neutral pH respectively, Student t Test). There was no significant difference in cell viability between the three concentrations of glucose when standard solution was used (ANOVA p = 0.218), although cell viability was higher after exposition to neutral pH peritoneal dialysis fluid at 1.5% in comparison to 2.3 and 4.25% glucose concentrations (ANOVA p = 0.008: Bonferroni 1.5% vs. 2.3% p = 0.033, 1.5% vs. 4.25% p = 0.014, 2.3% vs. 4.25% p = 1.00). Conclusion: Cell viability was better in neutral pH dialysis solution, especially in the lower glucose concentration. A more physiological pH and lower glucose degradation products may be responsible for such results.