923 resultados para PHYSICAL RADIATION EFFECTS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we study the SWAP operation in a two-qubit anisotropic XXZ model in the presence of an inhomogeneous magnetic field. We establish the range of anisotropic parameter lambda within which the SWAP operation is feasible. The SWAP errors caused by the inhomogeneous field are evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we report the applicability of the density matrix renormalization group (DMRG) approach to the cylindrical single wall carbon nanotube (SWCN) for the purpose of its correlation effect. By applying the DMRG approach to the t+U+V model, with t and V being the hopping and Coulomb energies between the nearest neighboring sites, respectively, and U the on-site Coulomb energy, we calculate the phase diagram for the SWCN with chiral numbers (n(1)=3, n(2)=2), which reflects the competition between the correlation energy U and V. Within reasonable parameter ranges, we investigate possible correlated ground states, the lowest excitations, and the corresponding correlation functions in which the connection with the excitonic insulator is particularly addressed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Hamiltonian of wurtzite quantum rods with an ellipsoidal boundary under electric field is given after a coordinate transformation. The electronic structure and optical properties are studied in the framework of the effective-mass envelope-function theory. The quantum-confined Stark effect is illustrated by studying the change of the electronic structures under electric field. The transition probabilities between the electron and hole states decrease sharply with the increase of the electric field. The polarization factor increases with the increase of the electric field. Effects of the electric field and the shape of the rods on the exciton effect are also investigated. The exciton binding energy decreases with the increase of both the electric field and the aspect ratio. In the end, considering the exciton binding energy, we calculated the band gap variation of size- and shape-controlled colloidal CdSe quantum rods, which is in good agreement with experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantum-confined Stark effects are investigated theoretically in GaAs/AlxGa1-xAs quantum wires formed in V-grooved structures. The electronic structures of the V-shaped quantum wires are calculated within the effective mass envelope function theory in the presence of electric field. The binding energies of excitons are also studied by two-dimensional Fourier transformation and variational method. The blue Stark shifts are found when the electric field is applied in the growth direction. A possible mechanism in which the blueshifts of photoluminescence peaks are attributed to two factors, one factor comes from the asymmetric structure of quantum wire along the electric field and another factor arises from the electric-field-induced change of the Coulomb interaction. The numerical results are compared with the recent experiment measurement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the phase-conjugate polarization interference between two one-photon processes. When the laser has broadband linewidth, the sum-frequency polarization beat (SFPB) signal shows the autocorrelation of SFPB exhibits hybrid radiation-matter detuning terahertz damping oscillation. As an attosecond ultrafast modulation process, it can be extended intrinsically to any sum-frequency of energy-levels. It hits been also found that the asymmetric behaviors of the polarization beat signals result from the unbalanced dispersion effects, (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A radially polarized beam focused by a high-numerical-aperture (NA) objective has a strong longitudinal and nonpropagating electric field in the focal region, which implies that it is suitable for axial optical trapping. In this paper, we use the vectorial diffraction integral to represent the field distribution of the radially polarized beam focused by a high-NA objective and then employ the T-matrix method to compute the radiation forces on spherical particles. Effects of different parameters, such as the size of the sphere, the inner radius of the radially polarized beam, and the NA of the objective, on the radiation forces are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The magnetoexcitonic optical absorption of a GaAs bulk semiconductor driven by a terahertz (THz) field is investigated numerically. The method of the solution of the initial-value problem, in combination with the perfect matched layer technique, is used to calculate the optical susceptibility, with Coulomb interaction, Landau quantization, and THz fields involved nonperturbatively. It shows that there appear replicas and sidebands of magnetoexciton of different Landau levels, which greatly enrich the magneto-optical spectrum in the presence of a driving THz field. Copyright (C) EPLA, 2008.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of strain and structural properties of thick epitaxial InGaN layers grown on GaN with different thicknesses are investigated. It is found that, with increase in InGaN thickness, plastic relaxation via misfit dislocation generation becomes a more important strain relaxation mechanism. Accompanied with the relaxation of compressive strain, the In composition of InGaN layer increases and induces an apparent red-shift of the cathodoluminescence peak of the InGaN layer. On the other hand, the plastic relaxation process results in a high defect density, which degrades the structural and optical properties of InGaN layers. A transition layer region with both strain and In composition gradients is found to exist in the 450-nm-thick InGaN layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An extension of Faulkner's method for the energy levels of the shallow donor in silicon and germanium at zero field is made in order to investigate the effects of a magnetic field upon the excited states. The effective-mass Hamiltonian matrix elements of an electron bound to a donor center and subjected to a magnetic field B, which involves both the linear and quadratic terms of magnetic field, are expressed analytically and matrices are solved numerically. The photothermal ionization spectroscopy of phosphorus in ultrapure silicon for magnetic fields parallel to the [1,0,0] and [1,1,1] directions and up to 10 T is explained successfully.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physical vapor transport studies of GeSe(x)Te1 - x (x = 0.1, 0.2, 0.3, and 0.4) solid solutions demonstrated, that individual, large single crystals of these materials can be grown in closed ampoules. A compositional analysis of the grown crystals revealed, that the mass transport (crystal growth) process under steady-state conditions is pseudo-congruent and controlled by diffusion processes in the source material. From these experiments, the degree of non-stoichiometry (Ge-vacancy concentrations) of GeSe(x)Te1 - x single crystals could be estimated. The effects of the cubic to rhombohedral phase transformation during cooling on the microstructure and morphology of the grown mixed crystals are observed. This work provides the basis for subsequent defect studies and electrical measurements on these crystals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polaron cyclotron resonance (CR) has been studied in three modulation-doped GaAs/Al0.3Ga0.7As multiple quantum well structures in magnetic field up to 30 T. Large avoided-level-crossing splittings of the CR near the GaAs reststrahlen region, and smaller splittings in the region of the AlAs-like optical phonons of th AlGaAs barriers, are observed. Based on a comparison with a detailed theoretical calculation, the high frequency splitting, the magnitude of which increases with decreasing well width, is assigned to resonant polaron interactions with AlAs-like interface phonons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A model for analyzing the correlation between lattice parameters and point defects in semiconductors has been established. The results of this model for analyzing the substitutes in semiconductors are in accordance with those from Vegard's law and experiments. Based on this model, the lattice strains caused by the antisites, the tetrahedral and octahedral single interstitials, and the interstitial couples are analyzed. The superdilation in lattice parameters of GaAs grown at low temperatures by molecular-beam epitaxy can be interpreted by this model, which is in accordance with the experimental results. This model provides a way of analyzing the stoichiometry in bulk and epitaxial compound semiconductors nondestructively.