986 resultados para National Science Foundation (U.S.). Office of Polar Programs


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper formally defines the operational semantic for TRAFFIC, a specification language for flow composition applications proposed in BUCS-TR-2005-014, and presents a type system based on desired safety assurance. We provide proofs on reduction (weak-confluence, strong-normalization and unique normal form), on soundness and completeness of type system with respect to reduction, and on equivalence classes of flow specifications. Finally, we provide a pseudo-code listing of a syntax-directed type checking algorithm implementing rules of the type system capable of inferring the type of a closed flow specification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nearest neighbor classifiers are simple to implement, yet they can model complex non-parametric distributions, and provide state-of-the-art recognition accuracy in OCR databases. At the same time, they may be too slow for practical character recognition, especially when they rely on similarity measures that require computationally expensive pairwise alignments between characters. This paper proposes an efficient method for computing an approximate similarity score between two characters based on their exact alignment to a small number of prototypes. The proposed method is applied to both online and offline character recognition, where similarity is based on widely used and computationally expensive alignment methods, i.e., Dynamic Time Warping and the Hungarian method respectively. In both cases significant recognition speedup is obtained at the expense of only a minor increase in recognition error.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gesture spotting is the challenging task of locating the start and end frames of the video stream that correspond to a gesture of interest, while at the same time rejecting non-gesture motion patterns. This paper proposes a new gesture spotting and recognition algorithm that is based on the continuous dynamic programming (CDP) algorithm, and runs in real-time. To make gesture spotting efficient a pruning method is proposed that allows the system to evaluate a relatively small number of hypotheses compared to CDP. Pruning is implemented by a set of model-dependent classifiers, that are learned from training examples. To make gesture spotting more accurate a subgesture reasoning process is proposed that models the fact that some gesture models can falsely match parts of other longer gestures. In our experiments, the proposed method with pruning and subgesture modeling is an order of magnitude faster and 18% more accurate compared to the original CDP algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a type inference algorithm, in the style of compositional analysis, for the language TRAFFIC—a specification language for flow composition applications proposed in [2]—and prove that this algorithm is correct: the typings it infers are principal typings, and the typings agree with syntax-directed type checking on closed flow specifications. This algorithm is capable of verifying partial flow specifications, which is a significant improvement over syntax-directed type checking algorithm presented in [3]. We also show that this algorithm runs efficiently, i.e., in low-degree polynomial time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sensor applications in Sensoria [1] are expressed using STEP (Sensorium Task Execution Plan). SNAFU (Sensor-Net Applications as Functional Units) serves as a high-level sensor-programming language, which is compiled into STEP. In SNAFU’s current form, its differences with STEP are relatively minor, as they are limited to shorthands and macros not available in STEP. We show that, however restrictive it may seem, SNAFU has in fact universal power; technically, it is a Turing-complete language, i.e., any Turing program can be written in SNAFU (though not always conveniently). Although STEP may be allowed to have universal power, as a low-level language not directly available to Sensorium users, SNAFU programmers may use this power for malicious purposes or inadvertently introduce errors with destructive consequences. In future developments of SNAFU, we plan to introduce restrictions and highlevel features with safety guards, such as those provided by a type system, which will make SNAFU programming safer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent research have exposed new breeds of attacks that are capable of denying service or inflicting significant damage to TCP flows, without sustaining the attack traffic. Such attacks are often referred to as "low-rate" attacks and they stand in sharp contrast against traditional Denial of Service (DoS) attacks that can completely shut off TCP flows by flooding an Internet link. In this paper, we study the impact of these new breeds of attacks and the extent to which defense mechanisms are capable of mitigating the attack's impact. Through adopting a simple discrete-time model with a single TCP flow and a nonoblivious adversary, we were able to expose new variants of these low-rate attacks that could potentially have high attack potency per attack burst. Our analysis is focused towards worst-case scenarios, thus our results should be regarded as upper bounds on the impact of low-rate attacks rather than a real assessment under a specific attack scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract—Personal communication devices are increasingly being equipped with sensors that are able to passively collect information from their surroundings – information that could be stored in fairly small local caches. We envision a system in which users of such devices use their collective sensing, storage, and communication resources to query the state of (possibly remote) neighborhoods. The goal of such a system is to achieve the highest query success ratio using the least communication overhead (power). We show that the use of Data Centric Storage (DCS), or directed placement, is a viable approach for achieving this goal, but only when the underlying network is well connected. Alternatively, we propose, amorphous placement, in which sensory samples are cached locally and informed exchanges of cached samples is used to diffuse the sensory data throughout the whole network. In handling queries, the local cache is searched first for potential answers. If unsuccessful, the query is forwarded to one or more direct neighbors for answers. This technique leverages node mobility and caching capabilities to avoid the multi-hop communication overhead of directed placement. Using a simplified mobility model, we provide analytical lower and upper bounds on the ability of amorphous placement to achieve uniform field coverage in one and two dimensions. We show that combining informed shuffling of cached samples upon an encounter between two nodes, with the querying of direct neighbors could lead to significant performance improvements. For instance, under realistic mobility models, our simulation experiments show that amorphous placement achieves 10% to 40% better query answering ratio at a 25% to 35% savings in consumed power over directed placement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many people suffer from conditions that lead to deterioration of motor control and makes access to the computer using traditional input devices difficult. In particular, they may loose control of hand movement to the extent that the standard mouse cannot be used as a pointing device. Most current alternatives use markers or specialized hardware to track and translate a user's movement to pointer movement. These approaches may be perceived as intrusive, for example, wearable devices. Camera-based assistive systems that use visual tracking of features on the user's body often require cumbersome manual adjustment. This paper introduces an enhanced computer vision based strategy where features, for example on a user's face, viewed through an inexpensive USB camera, are tracked and translated to pointer movement. The main contributions of this paper are (1) enhancing a video based interface with a mechanism for mapping feature movement to pointer movement, which allows users to navigate to all areas of the screen even with very limited physical movement, and (2) providing a customizable, hierarchical navigation framework for human computer interaction (HCI). This framework provides effective use of the vision-based interface system for accessing multiple applications in an autonomous setting. Experiments with several users show the effectiveness of the mapping strategy and its usage within the application framework as a practical tool for desktop users with disabilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effectiveness of service provisioning in largescale networks is highly dependent on the number and location of service facilities deployed at various hosts. The classical, centralized approach to determining the latter would amount to formulating and solving the uncapacitated k-median (UKM) problem (if the requested number of facilities is fixed), or the uncapacitated facility location (UFL) problem (if the number of facilities is also to be optimized). Clearly, such centralized approaches require knowledge of global topological and demand information, and thus do not scale and are not practical for large networks. The key question posed and answered in this paper is the following: "How can we determine in a distributed and scalable manner the number and location of service facilities?" We propose an innovative approach in which topology and demand information is limited to neighborhoods, or balls of small radius around selected facilities, whereas demand information is captured implicitly for the remaining (remote) clients outside these neighborhoods, by mapping them to clients on the edge of the neighborhood; the ball radius regulates the trade-off between scalability and performance. We develop a scalable, distributed approach that answers our key question through an iterative reoptimization of the location and the number of facilities within such balls. We show that even for small values of the radius (1 or 2), our distributed approach achieves performance under various synthetic and real Internet topologies that is comparable to that of optimal, centralized approaches requiring full topology and demand information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a typical overlay network for routing or content sharing, each node must select a fixed number of immediate overlay neighbors for routing traffic or content queries. A selfish node entering such a network would select neighbors so as to minimize the weighted sum of expected access costs to all its destinations. Previous work on selfish neighbor selection has built intuition with simple models where edges are undirected, access costs are modeled by hop-counts, and nodes have potentially unbounded degrees. However, in practice, important constraints not captured by these models lead to richer games with substantively and fundamentally different outcomes. Our work models neighbor selection as a game involving directed links, constraints on the number of allowed neighbors, and costs reflecting both network latency and node preference. We express a node's "best response" wiring strategy as a k-median problem on asymmetric distance, and use this formulation to obtain pure Nash equilibria. We experimentally examine the properties of such stable wirings on synthetic topologies, as well as on real topologies and maps constructed from PlanetLab and AS-level Internet measurements. Our results indicate that selfish nodes can reap substantial performance benefits when connecting to overlay networks composed of non-selfish nodes. On the other hand, in overlays that are dominated by selfish nodes, the resulting stable wirings are optimized to such great extent that even non-selfish newcomers can extract near-optimal performance through naive wiring strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the framework of iBench research project, our previous work created a domain specific language TRAFFIC [6] that facilitates specification, programming, and maintenance of distributed applications over a network. It allows safety property to be formalized in terms of types and subtyping relations. Extending upon our previous work, we add Hindley-Milner style polymorphism [8] with constraints [9] to the type system of TRAFFIC. This allows a programmer to use for-all quantifier to describe types of network components, escalating power and expressiveness of types to a new level that was not possible before with propositional subtyping relations. Furthermore, we design our type system with a pluggable constraint system, so it can adapt to different application needs while maintaining soundness. In this paper, we show the soundness of the type system, which is not syntax-directed but is easier to do typing derivation. We show that there is an equivalent syntax-directed type system, which is what a type checker program would implement to verify the safety of a network flow. This is followed by discussion on several constraint systems: polymorphism with subtyping constraints, Linear Programming, and Constraint Handling Rules (CHR) [3]. Finally, we provide some examples to illustrate workings of these constraint systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Classifying novel terrain or objects front sparse, complex data may require the resolution of conflicting information from sensors working at different times, locations, and scales, and from sources with different goals and situations. Information fusion methods can help resolve inconsistencies, as when evidence variously suggests that an object's class is car, truck, or airplane. The methods described here consider a complementary problem, supposing that information from sensors and experts is reliable though inconsistent, as when evidence suggests that an object's class is car, vehicle, and man-made. Underlying relationships among objects are assumed to be unknown to the automated system or the human user. The ARTMAP information fusion system used distributed code representations that exploit the neural network's capacity for one-to-many learning in order to produce self-organizing expert systems that discover hierarchical knowledge structures. The system infers multi-level relationships among groups of output classes, without any supervised labeling of these relationships.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ongoing research at Boston University has produced computational models of biological vision and learning that embody a growing corpus of scientific data and predictions. Vision models perform long-range grouping and figure/ground segmentation, and memory models create attentionally controlled recognition codes that intrinsically cornbine botton-up activation and top-down learned expectations. These two streams of research form the foundation of novel dynamically integrated systems for image understanding. Simulations using multispectral images illustrate road completion across occlusions in a cluttered scene and information fusion from incorrect labels that are simultaneously inconsistent and correct. The CNS Vision and Technology Labs (cns.bu.edulvisionlab and cns.bu.edu/techlab) are further integrating science and technology through analysis, testing, and development of cognitive and neural models for large-scale applications, complemented by software specification and code distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both animals and mobile robots, or animats, need adaptive control systems to guide their movements through a novel environment. Such control systems need reactive mechanisms for exploration, and learned plans to efficiently reach goal objects once the environment is familiar. How reactive and planned behaviors interact together in real time, and arc released at the appropriate times, during autonomous navigation remains a major unsolved problern. This work presents an end-to-end model to address this problem, named SOVEREIGN: A Self-Organizing, Vision, Expectation, Recognition, Emotion, Intelligent, Goal-oriented Navigation system. The model comprises several interacting subsystems, governed by systems of nonlinear differential equations. As the animat explores the environment, a vision module processes visual inputs using networks that arc sensitive to visual form and motion. Targets processed within the visual form system arc categorized by real-time incremental learning. Simultaneously, visual target position is computed with respect to the animat's body. Estimates of target position activate a motor system to initiate approach movements toward the target. Motion cues from animat locomotion can elicit orienting head or camera movements to bring a never target into view. Approach and orienting movements arc alternately performed during animat navigation. Cumulative estimates of each movement, based on both visual and proprioceptive cues, arc stored within a motor working memory. Sensory cues are stored in a parallel sensory working memory. These working memories trigger learning of sensory and motor sequence chunks, which together control planned movements. Effective chunk combinations arc selectively enhanced via reinforcement learning when the animat is rewarded. The planning chunks effect a gradual transition from reactive to planned behavior. The model can read-out different motor sequences under different motivational states and learns more efficient paths to rewarded goals as exploration proceeds. Several volitional signals automatically gate the interactions between model subsystems at appropriate times. A 3-D visual simulation environment reproduces the animat's sensory experiences as it moves through a simplified spatial environment. The SOVEREIGN model exhibits robust goal-oriented learning of sequential motor behaviors. Its biomimctic structure explicates a number of brain processes which are involved in spatial navigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Classifying novel terrain or objects from sparse, complex data may require the resolution of conflicting information from sensors woring at different times, locations, and scales, and from sources with different goals and situations. Information fusion methods can help resolve inconsistencies, as when eveidence variously suggests that and object's class is car, truck, or airplane. The methods described her address a complementary problem, supposing that information from sensors and experts is reliable though inconsistent, as when evidence suggests that an object's class is car, vehicle, and man-made. Underlying relationships among classes are assumed to be unknown to the autonomated system or the human user. The ARTMAP information fusion system uses distributed code representations that exploit the neural network's capacity for one-to-many learning in order to produce self-organizing expert systems that discover hierachical knowlege structures. The fusion system infers multi-level relationships among groups of output classes, without any supervised labeling of these relationships. The procedure is illustrated with two image examples, but is not limited to image domain.