Biologically Inspired Approaches to Automated Feature Extraction and Target Recognition


Autoria(s): Carpenter, Gail; Martens, Siegfried; Mingolla, Ennio; Ogas, Ogi; Sai, Chaitanya
Data(s)

14/11/2011

14/11/2011

01/10/2004

Resumo

Ongoing research at Boston University has produced computational models of biological vision and learning that embody a growing corpus of scientific data and predictions. Vision models perform long-range grouping and figure/ground segmentation, and memory models create attentionally controlled recognition codes that intrinsically cornbine botton-up activation and top-down learned expectations. These two streams of research form the foundation of novel dynamically integrated systems for image understanding. Simulations using multispectral images illustrate road completion across occlusions in a cluttered scene and information fusion from incorrect labels that are simultaneously inconsistent and correct. The CNS Vision and Technology Labs (cns.bu.edulvisionlab and cns.bu.edu/techlab) are further integrating science and technology through analysis, testing, and development of cognitive and neural models for large-scale applications, complemented by software specification and code distribution.

Air Force Office of Scientific Research (F40620-01-1-0423); National Geographic-Intelligence Agency (NMA 201-001-1-2016); National Science Foundation (SBE-0354378; BCS-0235298); Office of Naval Research (N00014-01-1-0624); National Geospatial-Intelligence Agency and the National Society of Siegfried Martens (NMA 501-03-1-2030, DGE-0221680); Department of Homeland Security graduate fellowship

Identificador

http://hdl.handle.net/2144/1928

Idioma(s)

en_US

Publicador

Boston University Center for Adaptive Systems and Department of Cognitive and Neural Systems

Relação

BU CAS/CNS Technical Reports;CAS/CNS-TR-2004-008

Direitos

Copyright 2004 Boston University. Permission to copy without fee all or part of this material is granted provided that: 1. The copies are not made or distributed for direct commercial advantage; 2. the report title, author, document number, and release date appear, and notice is given that copying is by permission of BOSTON UNIVERSITY TRUSTEES. To copy otherwise, or to republish, requires a fee and / or special permission.

Boston University Trustees

Tipo

Technical Report