967 resultados para Models : mixing length
Resumo:
Aim To evaluate emergency nurse practitioner service effectiveness on outcomes related to quality of care and service responsiveness. Background Increasing service pressures in the emergency setting have resulted in the adoption of service innovation models; the most common and rapidly expanding of these is the emergency nurse practitioner. The delivery of high quality patient care in the emergency department is one of the most important service indicators to be measured in health services today. The rapid uptake of emergency nurse practitioner service in Australia has outpaced the capacity to evaluate this model in outcomes related to safety and quality of patient care. Design Pragmatic randomized controlled trial at one site with 260 participants. Methods This protocol describes a definitive prospective randomized controlled trial, which will examine the impact of emergency nurse practitioner service on key patient care and service indicators. The study control will be standard emergency department care. The intervention will be emergency nurse practitioner service. The primary outcome measure is pain score reduction and time to analgesia. Secondary outcome measures are waiting time, number of patients who did not wait, length of stay in the emergency department and representations within 48 hours. Discussion Scant research enquiry evaluating emergency nurse practitioner service on patient effectiveness and service responsiveness exists currently. This study is a unique trial that will test the effectiveness of the emergency nurse practitioner service on patients who present to the emergency department with pain. The research will provide an opportunity to further evaluate emergency nurse practitioner models of care and build research capacity into the workforce.
Resumo:
Invasion of extracellular matrices is crucial to a number of physiological and pathophysiological states, including tumor cell metastasis, arthritis, embryo implantation, wound healing, and early development. To isolate invasion from the additional complexities of these scenarios a number of in vitro invasion assays have been developed over the years. Early studies employed intact tissues, like denuded amniotic membrane (1) or embryonic chick heart fragments (2), however recently, purified matrix components or complex matrix extracts have been used to provide more uniform and often more rapid analyses (for examples, see the following integrin studies). Of course, the more holistic view of invasion offered in the earlier assays is valuable and cannot be fully reproduced in these more rapid assays, but advantages of reproducibility among replicates, ease of preparation and analysis, and overall high throughput favor the newer assays. In this chapter, we will focus on providing detailed protocols for Matrigel-based assays (Matrigel=reconstituted basement membrane; reviewed in ref. (3)). Matrigel is an extract from the transplantable Engelbreth-Holm-Swarm murine sarcoma that deposits a multilammelar basement membrane. Matrigel is available commercially (Becton Dickinson, Bedford, MA), and can be manipulated as a liquid at 4°C into a variety of different formats. Alternatively, cell culture inserts precoated with Matrigel can be purchased for even greater simplicity.
Resumo:
Water management is vital for mine sites both for production and sustainability related issues. Effective water management is a complex task since the role of water on mine sites is multifaceted. Computers models are tools that represent mine site water interaction and can be used by mine sites to inform or evaluate their water management strategies. There exist several types of models that can be used to represent mine site water interactions. This paper presents three such models: an operational model, an aggregated systems model and a generic systems model. For each model the paper provides a description and example followed by an analysis of its advantages and disadvantages. The paper hypotheses that since no model is optimal for all situations, each model should be applied in situations where it is most appropriate based upon the scale of water interactions being investigated, either unit (operation), inter-site (aggregated systems) or intra-site (generic systems).
Resumo:
There is a wide variety of drivers for business process modelling initiatives, reaching from business evolution and process optimisation over compliance checking and process certification to process enactment. That, in turn, results in models that differ in content due to serving different purposes. In particular, processes are modelled on different abstraction levels and assume different perspectives. Vertical alignment of process models aims at handling these deviations. While the advantages of such an alignment for inter-model analysis and change propagation are out of question, a number of challenges has still to be addressed. In this paper, we discuss three main challenges for vertical alignment in detail. Against this background, the potential application of techniques from the field of process integration is critically assessed. Based thereon, we identify specific research questions that guide the design of a framework for model alignment.
Resumo:
This thesis investigates the use of building information models for access control and security applications in critical infrastructures and complex building environments. It examines current problems in security management for physical and logical access control and proposes novel solutions that exploit the detailed information available in building information models. The project was carried out as part of the Airports of the Future Project and the research was modelled based on real-world problems identified in collaboration with our industry partners in the project.
Resumo:
Western economies are highly dependent on service innovation for their growth and employment. An important driver for economic growth is, therefore, the development of new, innovative services like electronic services, mobile end-user services, new financial or personalized services. Service innovation joins four trends that currently shape the western economies: the growing importance of services, the need for innovation, changes in consumer and business markets, and the advancements in information and communication technology (ICT).
Resumo:
This paper develops a semiparametric estimation approach for mixed count regression models based on series expansion for the unknown density of the unobserved heterogeneity. We use the generalized Laguerre series expansion around a gamma baseline density to model unobserved heterogeneity in a Poisson mixture model. We establish the consistency of the estimator and present a computational strategy to implement the proposed estimation techniques in the standard count model as well as in truncated, censored, and zero-inflated count regression models. Monte Carlo evidence shows that the finite sample behavior of the estimator is quite good. The paper applies the method to a model of individual shopping behavior. © 1999 Elsevier Science S.A. All rights reserved.
Resumo:
A new test of hypothesis for classifying stationary time series based on the bias-adjusted estimators of the fitted autoregressive model is proposed. It is shown theoretically that the proposed test has desirable properties. Simulation results show that when time series are short, the size and power estimates of the proposed test are reasonably good, and thus this test is reliable in discriminating between short-length time series. As the length of the time series increases, the performance of the proposed test improves, but the benefit of bias-adjustment reduces. The proposed hypothesis test is applied to two real data sets: the annual real GDP per capita of six European countries, and quarterly real GDP per capita of five European countries. The application results demonstrate that the proposed test displays reasonably good performance in classifying relatively short time series.
Resumo:
This paper addresses the problem of determining optimal designs for biological process models with intractable likelihoods, with the goal of parameter inference. The Bayesian approach is to choose a design that maximises the mean of a utility, and the utility is a function of the posterior distribution. Therefore, its estimation requires likelihood evaluations. However, many problems in experimental design involve models with intractable likelihoods, that is, likelihoods that are neither analytic nor can be computed in a reasonable amount of time. We propose a novel solution using indirect inference (II), a well established method in the literature, and the Markov chain Monte Carlo (MCMC) algorithm of Müller et al. (2004). Indirect inference employs an auxiliary model with a tractable likelihood in conjunction with the generative model, the assumed true model of interest, which has an intractable likelihood. Our approach is to estimate a map between the parameters of the generative and auxiliary models, using simulations from the generative model. An II posterior distribution is formed to expedite utility estimation. We also present a modification to the utility that allows the Müller algorithm to sample from a substantially sharpened utility surface, with little computational effort. Unlike competing methods, the II approach can handle complex design problems for models with intractable likelihoods on a continuous design space, with possible extension to many observations. The methodology is demonstrated using two stochastic models; a simple tractable death process used to validate the approach, and a motivating stochastic model for the population evolution of macroparasites.
Resumo:
During the early design stages of construction projects, accurate and timely cost feedback is critical to design decision making. This is particularly challenging for cost estimators, as they must quickly and accurately estimate the cost of the building when the design is still incomplete and evolving. State-of-the-art software tools typically use a rule-based approach to generate detailed quantities from the design details present in a building model and relate them to the cost items in a cost estimating database. In this paper, we propose a generic approach for creating and maintaining a cost estimate using flexible mappings between a building model and a cost estimate. The approach uses queries on the building design that are used to populate views, and each view is then associated with one or more cost items. The benefit of this approach is that the flexibility of modern query languages allows the estimator to encode a broad variety of relationships between the design and estimate. It also avoids the use of a common standard to which both designers and estimators must conform, allowing the estimator added flexibility and functionality to their work.
Resumo:
It is demonstrated that a magnetic field has a profound effect on the length of a single-wall carbon nanotube (SWCNT) synthesized in the arc discharge. The average length of SWCNT increases by a factor of 2 in discharge with magnetic field as compared with the discharge without magnetic field, and the yield of long nanotubes with lengths above 5 μm also increases. A model of SWCNT growth on metal catalyst in arc plasma was developed. Monte-Carlo simulations confirm that the increase of the plasma density in the magnetic field leads to an increase in the nanotube growth rate and thus leads to longer nanotubes.
Resumo:
The effects of various discharge parameters and ambient gas on the length of He atmospheric plasma jet plumes expanding into the open air are studied. It is found that the voltage and width of the discharge-sustaining pulses exert significantly stronger effects on the plume length than the pulse frequency, gas flow rate, and nozzle diameter. This result is explained through detailed analysis of the I-V characteristics of the primary and secondary discharges which reveals the major role of the integrated total charges of the primary discharge in the plasma dynamics. The length of the jet plume can be significantly increased by guiding the propagating plume into a glass tube attached to the nozzle. This increase is attributed to elimination of the diffusion of surrounding air into the plasma plume, an absence which facilitates the propagation of the ionization front. These results are important for establishing a good level of understanding of the expansion dynamics and for enabling a high degree of control of atmospheric pressure plasmas in biomedical, materials synthesis and processing, environmental and other existing and emerging industrial applications. © 2009 American Institute of Physics.
Resumo:
This paper investigates compressed sensing using hidden Markov models (HMMs) and hence provides an extension of recent single frame, bounded error sparse decoding problems into a class of sparse estimation problems containing both temporal evolution and stochastic aspects. This paper presents two optimal estimators for compressed HMMs. The impact of measurement compression on HMM filtering performance is experimentally examined in the context of an important image based aircraft target tracking application. Surprisingly, tracking of dim small-sized targets (as small as 5-10 pixels, with local detectability/SNR as low as − 1.05 dB) was only mildly impacted by compressed sensing down to 15% of original image size.
Resumo:
Recent natural disasters such as the Haitian earthquake 2011, the South East Queensland floods 2011, the Japanese earthquake and tsunami 2011 and Hurricane Sandy in the United States of America in 2012, have seen social media platforms changing the face of emergency management communications, not only in times of crisis and also during business-as-usual operations. With social media being such an important and powerful communication tool, especially for emergency management organisations, the question arises as to whether the use of social media in these organisations emerged by considered strategic design or more as a reactive response to a new and popular communication channel. This paper provides insight into how the social media function has been positioned, staffed and managed in organisations throughout the world, with a particular focus on how these factors influence the style of communication used on social media platforms. This study has identified that the social media function falls on a continuum between two polarised models, namely the authoritative one-way communication approach and the more interactive approach that seeks to network and engage with the community through multi-way communication. Factors such the size of the organisation; dedicated resourcing of the social media function; organisational culture and mission statement; the presence of a social media champion within the organisation; management style and knowledge about social media play a key role in determining where on the continuum organisations sit in relation to their social media capability. This review, together with a forthcoming survey of Australian emergency management organisations and local governments, will fill a gap in the current body of knowledge about the evolution, positioning and usage of social media in organisations working in the emergency management field in Australia. These findings will be fed back to Industry for potential inclusion in future strategies and practices.
Resumo:
A theoretical model describing the plasma-assisted growth of carbon nanofibres (CNFs) that accounts for the nanostructure heating by ion and etching gas fluxes from the plasma is developed. Using the model, it is shown that fluxes from the plasma environment can substantially increase the temperature of the catalyst nanoparticle located on the top of the CNF with respect to the substrate temperature. The difference between the catalyst and the substrate temperatures depends on the substrate width, the length of the CNF, the neutral gas density and temperature as well as the densities of the ions and atoms of the etching gas. In addition to the heating of the nanostructure, the ions and etching gas atoms from the ionized gas environment also strongly affect the CNF growth rates. Due to ion bombardment, the CNF growth rates in plasma enhanced chemical vapour deposition may be much higher than the rates in similar neutral gas-based thermal processes. The CNF growth model, which accounts for the nanostructure heating by the plasma-generated species, provides the growth rates that are in better agreement with the available experimental data on CNF growth than the models in which the heating effects are ignored.