928 resultados para Message
Resumo:
Dissertação apresentada à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Gestão Estratégica das Relações Públicas.
Resumo:
Distributed real-time systems, such as factory automation systems, require that computer nodes communicate with a known and low bound on the communication delay. This can be achieved with traditional time division multiple access (TDMA). But improved flexibility and simpler upgrades are possible through the use of TDMA with slot-skipping (TDMA/SS), meaning that a slot is skipped whenever it is not used and consequently the slot after the skipped slot starts earlier. We propose a schedulability analysis for TDMA/SS. We assume knowledge of all message streams in the system, and that each node schedules messages in its output queue according to deadline monotonic. Firstly, we present a non-exact (but fast) analysis and then, at the cost of computation time, we also present an algorithm that computes exact queuing times.
Resumo:
In this paper, we address the problem of sharing a wireless channel among a set of sporadic message streams where a message stream issues transmission requests with real-time deadlines. We propose a collision-free wireless medium access control (MAC) protocol which implements static-priority scheduling, supports a large number of priority levels and is fully distributed. It is an adaptation to a wireless channel of the dominance protocol used in the CAN bus. But, unlike that protocol, our protocol does not require a node having the ability to receive an incoming bit from the channel while transmitting to the channel. The evaluation of the protocol with real embedded computing platforms is presented to show that the proposed protocol is in fact collision-free and prioritized. We measure the response times of our implementation and show that the response-time analysis developed for the protocol offers an upper bound on the response times.
Resumo:
We propose a wireless medium access control (MAC) protocol that provides static-priority scheduling of messages in a guaranteed collision-free manner. Our protocol supports multiple broadcast domains, resolves the wireless hidden terminal problem and allows for parallel transmissions across a mesh network. Arbitration of messages is achieved without the notion of a master coordinating node, global clock synchronization or out-of-band signaling. The protocol relies on bit-dominance similar to what is used in the CAN bus except that in order to operate on a wireless physical layer, nodes are not required to receive incoming bits while transmitting. The use of bit-dominance efficiently allows for a much larger number of priorities than would be possible using existing wireless solutions. A MAC protocol with these properties enables schedulability analysis of sporadic message streams in wireless multihop networks.
Resumo:
Consider a network where all nodes share a single broadcast domain such as a wired broadcast network. Nodes take sensor readings but individual sensor readings are not the most important pieces of data in the system. Instead, we are interested in aggregated quantities of the sensor readings such as minimum and maximum values, the number of nodes and the median among a set of sensor readings on different nodes. In this paper we show that a prioritized medium access control (MAC) protocol may advantageously be exploited to efficiently compute aggregated quantities of sensor readings. In this context, we propose a distributed algorithm that has a very low time and message-complexity for computing certain aggregated quantities. Importantly, we show that if every sensor node knows its geographical location, then sensor data can be interpolated with our novel distributed algorithm, and the message-complexity of the algorithm is independent of the number of nodes. Such an interpolation of sensor data can be used to compute any desired function; for example the temperature gradient in a room (e.g., industrial plant) densely populated with sensor nodes, or the gas concentration gradient within a pipeline or traffic tunnel.
Resumo:
Consider the problem of deciding whether a set of n sporadic message streams meet deadlines on a Controller Area Network (CAN) bus for a specified priority assignment. It is assumed that message streams have implicit deadlines and no release jitter. An algorithm to solve this problem is well known but unfortunately it time complexity is non-polynomial. We present an algorithm with polynomial time-complexity for computing an upper bound on the response times. Clearly, if the upper bound on the response time does not exceed the deadline then all deadlines are met. The pessimism of our approach is proven: if the upper bound of the response time exceeds the deadline then the response time exceeds the deadline as well for a CAN network with half the speed.
Resumo:
Waste oil recycling companies play a very important role in our society. Competition among companies is tough and process optimization is essential for survival. By equipping oil containers with a level monitoring system that periodically reports the level and alerts when it reaches the preset threshold, the oil recycling companies are able to streamline the oil collection process and, thus, reduce the operation costs while maintaining the quality of service. This paper describes the development of this level monitoring system by a team of four students from different engineering backgrounds and nationalities. The team conducted a study of the state of the art, draw marketing and sustainable development plans and, finally, designed and implemented a prototype that continuously measures the container content level and sends an alert message as soon as it reaches the preset capacity.
Resumo:
Consider the problem of scheduling sporadic message transmission requests with deadlines. For wired channels, this has been achieved successfully using the CAN bus. For wireless channels, researchers have recently proposed a similar solution; a collision-free medium access control (MAC) protocol that implements static-priority scheduling. Unfortunately no implementation has been reported, yet. We implement and evaluate it to find that the implementation indeed is collision-free and prioritized. This allows us to develop schedulability analysis for the implementation. We measure the response times of messages in our implementation and find that our new response-time analysis indeed offers an upper bound on the response times. This enables a new class of wireless real-time systems with timeliness guarantees for sporadic messages and it opens-up a new research area: schedulability analysis for wireless networks.
Resumo:
Dissertação apresentada à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Jornalismo.
Resumo:
Relatório de estágio apresentado à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Jornalismo.
Resumo:
Trabalho de projeto apresentado à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Gestão Estratégica das Relações Públicas.
Resumo:
Dissertação apresentada à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Publicidade e Marketing.
Resumo:
Maintaining a high level of data security with a low impact on system performance is more challenging in wireless multimedia applications. Protocols that are used for wireless local area network (WLAN) security are known to significantly degrade performance. In this paper, we propose an enhanced security system for a WLAN. Our new design aims to decrease the processing delay and increase both the speed and throughput of the system, thereby making it more efficient for multimedia applications. Our design is based on the idea of offloading computationally intensive encryption and authentication services to the end systems’ CPUs. The security operations are performed by the hosts’ central processor (which is usually a powerful processor) before delivering the data to a wireless card (which usually has a low-performance processor). By adopting this design, we show that both the delay and the jitter are significantly reduced. At the access point, we improve the performance of network processing hardware for real-time cryptographic processing by using a specialized processor implemented with field-programmable gate array technology. Furthermore, we use enhanced techniques to implement the Counter (CTR) Mode with Cipher Block Chaining Message Authentication Code Protocol (CCMP) and the CTR protocol. Our experiments show that it requires timing in the range of 20–40 μs to perform data encryption and authentication on different end-host CPUs (e.g., Intel Core i5, i7, and AMD 6-Core) as compared with 10–50 ms when performed using the wireless card. Furthermore, when compared with the standard WiFi protected access II (WPA2), results show that our proposed security system improved the speed to up to 3.7 times.
Resumo:
In this manuscript we tackle the problem of semidistributed user selection with distributed linear precoding for sum rate maximization in multiuser multicell systems. A set of adjacent base stations (BS) form a cluster in order to perform coordinated transmission to cell-edge users, and coordination is carried out through a central processing unit (CU). However, the message exchange between BSs and the CU is limited to scheduling control signaling and no user data or channel state information (CSI) exchange is allowed. In the considered multicell coordinated approach, each BS has its own set of cell-edge users and transmits only to one intended user while interference to non-intended users at other BSs is suppressed by signal steering (precoding). We use two distributed linear precoding schemes, Distributed Zero Forcing (DZF) and Distributed Virtual Signalto-Interference-plus-Noise Ratio (DVSINR). Considering multiple users per cell and the backhaul limitations, the BSs rely on local CSI to solve the user selection problem. First we investigate how the signal-to-noise-ratio (SNR) regime and the number of antennas at the BSs impact the effective channel gain (the magnitude of the channels after precoding) and its relationship with multiuser diversity. Considering that user selection must be based on the type of implemented precoding, we develop metrics of compatibility (estimations of the effective channel gains) that can be computed from local CSI at each BS and reported to the CU for scheduling decisions. Based on such metrics, we design user selection algorithms that can find a set of users that potentially maximizes the sum rate. Numerical results show the effectiveness of the proposed metrics and algorithms for different configurations of users and antennas at the base stations.
Resumo:
The wide acceptance of digital repositories today in the eLearning field raises several interoperability issues. In this paper we present the interoperability features of a service oriented repository of learning objects called crimsonHex. These features are compliant with the existing standards and we propose extensions to the IMS interoperability recommendation, adding new functions, formalizing message interchange and providing also a REST interface. To validate the proposed extensions and its implementation in crimsonHex we developed a repository plugin for Moodle 2.0 that is expected to be included in the next release of this popular learning management system.