948 resultados para Marxismo latinoamericano heterodoxo
Resumo:
Trabajando en un ambiente de Geometría Dinámica y a partir de actividades que involucran al arbelos de Arquímedes se busca explicitar la formulación de conjeturas y elaborar demostraciones que den cuenta de las conjeturas formuladas, poniendo de relieve la diversidad de resultados obtenidos así como la riqueza de los caminos tomados.
Resumo:
Se reporta aquí un minicurso en el que participaron profesores de matemática de Enseñanza Media. Trabajando en un ambiente de Geometría Dinámica se aborda la resolución de problemas que involucran distintas áreas de la matemática: geometría métrica, cálculo diferencial, geometría analítica, álgebra, y que permiten poner de manifiesto la pertinencia y relevancia –así como señalar sus peculiaridades- del ambiente dinámico en la construcción del conocimiento matemático por parte de los participantes y a su vez discutir su papel en el trabajo con estudiantes.
Resumo:
En este curso corto utilizamos distintas aplicaciones de geometría dinámica para realizar construcciones geométricas en el modelo de Poincaré para geometría hiperbólica con el propósito de investigar y determinar la naturaleza de algunos teoremas de geometría para la enseñanza secundaria y superior. De esta forma clasificamos algunos de los teoremas de geometría plana como neutrales, estrictamente euclidianas o estrictamente hiperbólicos.
Resumo:
El presente artículo recopila la experiencia de expertos en la etnomatemática, de un grupo de discusión en RELME 27. Sus cuestionamientos se fundamentan, en la etnomatemática y el impacto de esta en el currículo escolar. Se toma en cuenta las características sociales del sistema educativo latinoamericano, los objetivos de desarrollo del milenio y el impacto de ambos, sobre la educación matemática de los pueblos originarios. Se plantean retos futuros y una visión sobre la recuperación de los saberes matemáticos. Metodológicamente se sustenta como una investigación de enfoque cualitativo, con diseño de teoría fundamental, donde sus datos se analizan por codificación abierta axial.
Resumo:
Diversas investigaciones se interesan por la inserción de los “conocimientos previos” de los estudiantes en el proceso de aprendizaje de las matemáticas, considerándolos como bases iniciales de significados que deben ser sustituidos por medio de la instrucción “formal”. A diferencia de lo anterior, el propósito de la investigación es legitimar los saberes que se encuentran en el cotidiano. Para ello, se conforma, desde la socioepistemología, la categoría del cotidiano del ciudadano que resalta una función social particular del conocimiento matemático. Para la conformación de la evidencia empírica, se da cuenta de los usos de las gráficas en talleres de divulgación científica, evidenciando cómo el cotidiano brinda elementos funcionales que podrían conformar parte de un rediseño del discurso matemático escolar.
Resumo:
Este trabajo pretende dar a conocer el avance, que hasta el momento se ha logrado, en la línea de investigación: “Visualización y pensamiento global en Matemáticas”, la cual persigue, a partir de la Teoría de Representaciones Semióticas de Duval, la caracterización del estilo de pensamiento global y local, de estudiantes de nivel medio superior y superior y de sus profesores. En particular reporto los resultados preliminares encontrados hasta el momento con estudiantes de primeros semestres de licenciatura al abordar un problema de precálculo, contrastado con desempeños en ajedrez para interpretar aspectos semejantes en cuanto a la forma local o global de pensar un problema viendo sus registros que lleven a resultados que pudieran servir en la mejora de la enseñanza de algunos temas de matemáticas.
Resumo:
Se presenta el manejo de la prensa como medio didáctico para lograr que los alumnos vean a la Matemática inmersa en su vida cotidiana, despertando en ellos su interés en la materia, logrando transformar noticias, comentarios, anuncios, etc., de la prensa, en problemas para aplicar en ellos el quehacer matemático: cómo enfrentarlos, la búsqueda de vías de solución y la resolución exitosa de los mismos. Utilizar los medios de información del ámbito social como recurso didáctico nos permitirá cambiar esquemas tradicionales de la enseñanza por métodos y técnicas de participación activa bajo un enfoque constructivista, el objetivo del trabajo es: Ofrecer indicaciones metodológicas para propiciar en los estudiantes la utilización de modelos matemáticos en situaciones prácticas, a través del uso de la prensa.
Resumo:
Este trabajo es parte de una investigación que estudia prácticas de modelación en diversos escenarios con la intención de analizar las herramientas que surgen en este proceso. Se reportan experiencias con estudiantes, de nivel medio superior y superior de México y Chile, respectivamente, que participaron en puestas en escena de un diseño de aprendizaje basado en la modelación lineal. Sus producciones muestran argumentos, herramientas y procedimientos que utilizan al modelar, su análisis presenta invariantes y particularidades que exhiben el rol del estudiante en cada escenario. El trabajo se enmarca en la socioepistemología como perspectiva teórica.
Resumo:
Este reporte es parte de una investigación en curso que estudia prácticas de simulación y las herramientas que se construyen para su ejercicio, esta se desarrolla en el marco de la socioepistemología. La simulación se entiende como prácticas recurrentes de diferentes comunidades con la intencionalidad de describir fenómenos a partir de sus modelos. En este trabajo solo abordamos la simulación de fenómenos considerando modelos lineales, para ello analizamos dos puesta en escena de un diseño de aprendizaje con estudiantes de nivel medio superior y de posgrado. Reportamos las herramientas, procesos y argumentos de los actores al simular.
Resumo:
Discutimos neste trabalho resultados relativos a mudanças metodológicas realizadas pela prova escrita para alunos de uma escola brasileira. Partimos da experiência docente aliada ao estudo de pesquisas científicas que consideram a prova um momento de aprendizado. Porém acreditamos que isso pode ser potencializado por meio de prova escrita feita com duplas formadas por livre escolha dos alunos, mas duas provas distintas para propiciar a cada dupla o diálogo. Além disso, as duplas devem ser escolhidas com antecedência, sendo a nota obtida pela média aritmética das notas de cada um dos alunos.
Resumo:
Este artículo se enmarca en el proyecto de investigación “Creación de metodologías que permitan la integración de ciencias y matemáticas en el proceso de enseñanza y aprendizaje de la educación diversificada costarricense”, que fuera realizado por un equipo interdisciplinario conformado por profesionales en las áreas de matemática, física, química, biología y sociología. Junto a una breve contextualización teórica y metodológica, el presente artículo ofrece algunos ejemplos con prácticas y contenidos que faciliten a los estudiantes aplicar los conceptos de razones y proporciones en el análisis de casos vinculados a la vida cotidiana, y que a su vez permiten la integración con otras disciplinas.
Resumo:
En este artículo se describe el desarrollo de un curso que trata de los conceptos de área, medida y conservación de área, el cual estuvo dirigido a profesores de matemáticas de nivel medio y superior. El trabajo se llevó a cabo en tres fases. En la primera se analizaron los conceptos de área, conservación y medida (de área). En la segunda se mostraron los resultados de algunas investigaciones asociadas con el tema de conservación y medida de área, entre los que destacan los estudios de Piaget y sus colaboradores, así como Kordaki y Potari. En la tercera se realizaron actividades que involucró el trabajo con estos conceptos en figuras geométricas planas y expresiones analíticas. En ese tenor, es que en este escrito se analizan estos conceptos, los resultados de investigaciones que se presentaron y analizaron en el curso, y las actividades realizadas.
Resumo:
La enseñanza de la geometría es materia de muchos estudios y aproximaciones. En trabajos considerados para este taller (Bermúdez,1996; Flores y Barrera,2002; Nolé, 2001; Siñeriz,2002; Gutiérrez y Jaime,1994), se percibe el interés de docentes e investigadores latinoamericanos en generar propuestas que permitan mejorar su enseñanza. En general, éstas parten del modelo Van Hiele, y se reportan propuestas a alumnos (Bermúdez, 1996) y profesores (Flores y Barrera, 2002) en los cuales se exploran dificultades de unos y otros para acceder a los distintos niveles de aprendizaje. Así, se propuso este taller donde el participante pudo experimentar el proceso de conjetura y demostración, para trabajar en el nivel 4 del modelo, del que se registran pocas propuestas.
Resumo:
Este reporte trata de una investigación cooperativa cuyo tema es la comparación de la enseñanza de la geometría en Chile y en Francia (proyecto ECOS-CONYCIT). Después de definir nuestra metodología por zooms sucesivos, presentamos las mayores diferencias que encontramos entre los dos países. Estas diferencias conciernen a los ámbitos siguientes: la concepción de la geometría, los aspectos de la actividad matemática puestos en evidencia, la organización del aprendizaje, la extensión de los programas, la importancia dada a las aplicaciones de matemáticas y a la modelación. Los trabajos de C.Houdement y A.Kuzniak sobre los paradigmas geométricos nos permiten analizar las concepciones de la geometría.
Resumo:
Este trabajo forma parte de una investigación que pretende analizar la concepción que tienen los docentes de la noción de demostración dentro de la matemática y la influencia en sus prácticas. En él se plantea la necesidad de diferenciar diversas funciones para la demostración en matemática analizando su presencia en las concepciones de docentes y estudiantes del profesorado de matemática. El papel y la función de la demostración en el aula, o ha sido totalmente ignorada o bien se presta como medio de certeza, y en menor medida de explicación. Estas funciones más priorizadas se pueden vislumbrar a través de las respuestas obtenidas.