931 resultados para ISM: molecules


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Raman spectra of jáchymovite, (UO2)8(SO4)(OH)14•13H2O, were studied, complemented with infrared spectra, and compared with published Raman and infrared spectra of uranopilite, [(UO2)6(SO4)O2(OH)6(H2O)6] •6H2O. Bands related to the stretching and bending vibrations of (UO2)2+, (SO4)2-, (OH)- and water molecules were assigned. U-O bond lengths in uranyl and O-H…O hydrogen bond lengths were calculated from the Raman and infrared spectra.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dolomite mineral samples having white and light green colours of Indian origin have been characterized by EPR, optical and NIR spectroscopy. The optical spectrum exhibits a number of electronic bands due to presence of Fe(III) ions in the mineral. From EPR studies, the parameters of g for Fe(III) and g, A and D for Mn(II) are evaluated and the data confirm that the ions are in distorted octahedron. Optical absorption studies reveal that Fe(III) is in distorted octahedron. The bands in NIR spectra are due to the overtones and combinations of water molecules. Thus EPR and optical absorption spectral studies have proven useful for the study of the chemistry of dolomite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interactions between small molecules with biopolymers e.g. the bovine serum albumin (BSA protein), are important, and significant information is recorded in the UV–vis and fluorescence spectra of their reaction mixtures. The extraction of this information is difficult conventionally and principally because there is significant overlapping of the spectra of the three analytes in the mixture. The interaction of berberine chloride (BC) and the BSA protein provides an interesting example of such complex systems. UV–vis and fluorescence spectra of BC and BSA mixtures were investigated in pH 7.4 Tris–HCl buffer at 37 °C. Two sample series were measured by each technique: (1) [BSA] was kept constant and the [BC] was varied and (2) [BC] was kept constant and the [BSA] was varied. This produced four spectral data matrices, which were combined into one expanded spectral matrix. This was processed by the multivariate curve resolution–alternating least squares method (MCR–ALS). The results produced: (1) the extracted pure BC, BSA and the BC–BSA complex spectra from the measured heavily overlapping composite responses, (2) the concentration profiles of BC, BSA and the BC–BSA complex, which are difficult to obtain by conventional means, and (3) estimates of the number of binding sites of BC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An examination of Information Security (IS) and Information Security Management (ISM) research in Saudi Arabia has shown the need for more rigorous studies focusing on the implementation and adoption processes involved with IS culture and practices. Overall, there is a lack of academic and professional literature about ISM and more specifically IS culture in Saudi Arabia. Therefore, the overall aim of this paper is to identify issues and factors that assist the implementation and the adoption of IS culture and practices within the Saudi environment. The goal of this paper is to identify the important conditions for creating an information security culture in Saudi Arabian organizations. We plan to use this framework to investigate whether security culture has emerged into practices in Saudi Arabian organizations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effective focusing of electromagnetic (EM) energy to nanoscale regions is one of the major challenges in nano-photonics and plasmonics. The strong localization of the optical energy into regions much smaller than allowed by the diffraction limit, also called nanofocusing, offers promising applications in nano-sensor technology, nanofabrication, near-field optics or spectroscopy. One of the most promising solutions to the problem of efficient nanofocusing is related to surface plasmon propagation in metallic structures. Metallic tapered rods, commonly used as probes in near field microscopy and spectroscopy, are of a particular interest. They can provide very strong EM field enhancement at the tip due to surface plasmons (SP’s) propagating towards the tip of the tapered metal rod. A large number of studies have been devoted to the manufacturing process of tapered rods or tapered fibers coated by a metal film. On the other hand, structures such as metallic V-grooves or metal wedges can also provide strong electric field enhancements but manufacturing of these structures is still a challenge. It has been shown, however, that the attainable electric field enhancement at the apex in the V-groove is higher than at the tip of a metal tapered rod when the dissipation level in the metal is strong. Metallic V-grooves also have very promising characteristics as plasmonic waveguides. This thesis will present a thorough theoretical and numerical investigation of nanofocusing during plasmon propagation along a metal tapered rod and into a metallic V-groove. Optimal structural parameters including optimal taper angle, taper length and shape of the taper are determined in order to achieve maximum field enhancement factors at the tip of the nanofocusing structure. An analytical investigation of plasmon nanofocusing by metal tapered rods is carried out by means of the geometric optics approximation (GOA), which is also called adiabatic nanofocusing. However, GOA is applicable only for analysing tapered structures with small taper angles and without considering a terminating tip structure in order to neglect reflections. Rigorous numerical methods are employed for analysing non-adiabatic nanofocusing, by tapered rod and V-grooves with larger taper angles and with a rounded tip. These structures cannot be studied by analytical methods due to the presence of reflected waves from the taper section, the tip and also from (artificial) computational boundaries. A new method is introduced to combine the advantages of GOA and rigorous numerical methods in order to reduce significantly the use of computational resources and yet achieve accurate results for the analysis of large tapered structures, within reasonable calculation time. Detailed comparison between GOA and rigorous numerical methods will be carried out in order to find the critical taper angle of the tapered structures at which GOA is still applicable. It will be demonstrated that optimal taper angles, at which maximum field enhancements occur, coincide with the critical angles, at which GOA is still applicable. It will be shown that the applicability of GOA can be substantially expanded to include structures which could be analysed previously by numerical methods only. The influence of the rounded tip, the taper angle and the role of dissipation onto the plasmon field distribution along the tapered rod and near the tip will be analysed analytically and numerically in detail. It will be demonstrated that electric field enhancement factors of up to ~ 2500 within nanoscale regions are predicted. These are sufficient, for instance, to detect single molecules using surface enhanced Raman spectroscopy (SERS) with the tip of a tapered rod, an approach also known as tip enhanced Raman spectroscopy or TERS. The results obtained in this project will be important for applications for which strong local field enhancement factors are crucial for the performance of devices such as near field microscopes or spectroscopy. The optimal design of nanofocusing structures, at which the delivery of electromagnetic energy to the nanometer region is most efficient, will lead to new applications in near field sensors, near field measuring technology, or generation of nanometer sized energy sources. This includes: applications in tip enhanced Raman spectroscopy (TERS); manipulation of nanoparticles and molecules; efficient coupling of optical energy into and out of plasmonic circuits; second harmonic generation in non-linear optics; or delivery of energy to quantum dots, for instance, for quantum computations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The degradation of high voltage electrical insulation is a prime factor that can significantly influence the reliability performance and the costs of maintaining high voltage electricity networks. Little information is known about the system of localized degradation from corona discharges on the relatively new silicone rubber sheathed composite insulators that are now being widely used in high voltage applications. This current work focuses on the fundamental principles of electrical corona discharge phenomena to provide further insights to where damaging surface discharges may localize and examines how these discharges may degrade the silicone rubber material. Although water drop corona has been identified by many authors as a major cause of deterioration of silicone rubber high voltage insulation until now no thorough studies have been made of this phenomenon. Results from systematic measurements taken using modern digital instrumentation to simultaneously record the discharge current pulses and visible images associated with corona discharges from between metal electrodes, metal electrodes and water drops, and between waters drops on the surface of silicone rubber insulation, using a range of 50 Hz voltages are inter compared. Visual images of wet electrodes show how water drops can play a part in encouraging flashover, and the first reproducible visual images of water drop corona at the triple junction of water air and silicone rubber insulation are presented. A study of the atomic emission spectra of the corona produced by the discharge from its onset up to and including spark-over, using a high resolution digital spectrometer with a fiber optic probe, provides further understanding of the roles of the active species of atoms and molecules produced by the discharge that may be responsible for not only for chemical changes of insulator surfaces, but may also contribute to the degradation of the metal fittings that support the high voltage insulators. Examples of real insulators and further work specific to the electrical power industry are discussed. A new design concept to prevent/reduce the damaging effects of water drop corona is also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Raman spectra of pseudojohannite were studied and related to the structure of the mineral. Observed bands were assigned to the stretching and bending vibrations of (UO2)2+ and (SO4)2- units and of water molecules. The published formula of pseudojohannite is Cu6.5(UO2)8\[O8](OH)5\[(SO4)4].25H2O; however Raman spectroscopy does not detect any hydroxyl units. Raman bands at 805 and 810 cm-1 are assigned to (UO2)2+ stretching modes. The Raman bands at 1017 and 1100 cm-1 are assigned to the (SO4)2- symmetric and antisymmetric stretching vibrations. The three Raman bands at 423, 465 and 496 cm-1 are assigned to the (SO4)2- ν2 bending modes. The bands at 210 and 279 cm-1 are assigned to the doubly degenerate ν2 bending vibration of the (UO2)2+ units. U-O bond lengths in uranyl and O-H…O hydrogen bond lengths were calculated from the Raman and infrared spectra.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Raman spectra of metauranospinite Ca[(UO2)(AsO4)]2.8H2O complemented with infrared spectra were studied. Observed bands were assigned to the stretching and bending vibrations of (UO2)2+ and (AsO4)3- units and of water molecules. U-O bond lengths in uranyl and O-H…O hydrogen bond lengths were calculated from the Raman and infrared spectra.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Professional prac− tice guidelines for endoscope reprocessing re− commend reprocessing endoscopes between each case and proper storage following repro− cessing after the last case of the list. There is lim− ited empirical evidence to support the efficacy of endoscope reprocessing prior to use in the first case of the day; however, internationally, many guidelines continue to recommend this practice. The aim of this study is to estimate a safe shelf life for flexible endoscopes in a high−turnover gastroenterology unit. Materials and methods: In a prospective obser− vational study, all flexible endoscopes in active service during the 3−week study period were mi− crobiologically sampled prior to reprocessing be− fore the first case of the day (n = 200). The main outcome variables were culture status, organism cultured, and shelf life. Results: Among the total number of useable samples (n = 194), the overall contamination rate was 15.5 %, with a pathogenic contamination rate of 0.5 %. Mean time between last case one day and reprocessing before the first case on the next day (that is, shelf life) was 37.62 h (SD 36.47). Median shelf life was 18.8 h (range 5.27± 165.35 h). The most frequently identified organ− ism was coagulase−negative Staphylococcus, an environmental nonpathogenic organism. Conclusions: When processed according to es− tablished guidelines, flexible endoscopes remain free from pathogenic organisms between last case and next day first case use. Significant re− ductions in the expenditure of time and resources on reprocessing endoscopes have the potential to reduce the restraints experienced by high−turnover endoscopy units and improve ser− vice delivery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silylated layered double hydroxides (LDHs) were synthesized through a surfactant-free method involving an in situ condensation of silane with the surface hydroxyl group of LDHs during its reconstruction in carbonate solution. X-ray diffraction (XRD) patterns showed the silylation reaction occurred on the external surfaces of LDHs layers. The successful silylation was evidenced by 29Si cross-polarization magic-angle spinning nuclear magnetic resonance (29Si CP/MAS NMR) spectroscopy, attenuated total reflection Fourier transform infrared (ATR FTIR) spectroscopy, and infrared emission spectroscopy (IES). The ribbon shaped crystallites with a “rodlike” aggregation were observed through transmission electron microscopy (TEM) images. The aggregation was explained by the T2 and T3 types of linkage between adjacent silane molecules as indicated in the 29Si NMR spectrum. In addition, the silylated products show high thermal stability by maintained Si related bands even when the temperature was increased to 1000 °C as observed in IES spectra.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interactions of phenyldithioesters with gold nanoparticles (AuNPs) have been studied by monitoring changes in the surface plasmon resonance (SPR), depolarised light scattering, and surface enhanced Raman spectroscopy (SERS). Changes in the SPR indicated that an AuNP-phenyldithioester charge transfer complex forms in equilibrium with free AuNPs and phenyldithioester. Analysis of the Langmuir binding isotherms indicated that the equilibrium adsorption constant, Kads, was 2.3 ± 0.1 × 106 M−1, which corresponded to a free energy of adsorption of 36 ± 1 kJ mol−1. These values are comparable to those reported for interactions of aryl thiols with gold and are of a similar order of magnitude to moderate hydrogen bonding interactions. This has significant implications in the application of phenyldithioesters for the functionalization of AuNPs. The SERS results indicated that the phenyldithioesters interact with AuNPs through the C═S bond, and the molecules do not disassociate upon adsorption to the AuNPs. The SERS spectra are dominated by the portions of the molecule that dominate the charge transfer complex with the AuNPs. The significance of this in relation to the use of phenyldithioesters for molecular barcoding of nanoparticle assemblies is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A major focus of research in nanotechnology is the development of novel, high throughput techniques for fabrication of arbitrarily shaped surface nanostructures of sub 100 nm to atomic scale. A related pursuit is the development of simple and efficient means for parallel manipulation and redistribution of adsorbed atoms, molecules and nanoparticles on surfaces – adparticle manipulation. These techniques will be used for the manufacture of nanoscale surface supported functional devices in nanotechnologies such as quantum computing, molecular electronics and lab-on-achip, as well as for modifying surfaces to obtain novel optical, electronic, chemical, or mechanical properties. A favourable approach to formation of surface nanostructures is self-assembly. In self-assembly, nanostructures are grown by aggregation of individual adparticles that diffuse by thermally activated processes on the surface. The passive nature of this process means it is generally not suited to formation of arbitrarily shaped structures. The self-assembly of nanostructures at arbitrary positions has been demonstrated, though these have typically required a pre-patterning treatment of the surface using sophisticated techniques such as electron beam lithography. On the other hand, a parallel adparticle manipulation technique would be suited for directing the selfassembly process to occur at arbitrary positions, without the need for pre-patterning the surface. There is at present a lack of techniques for parallel manipulation and redistribution of adparticles to arbitrary positions on the surface. This is an issue that needs to be addressed since these techniques can play an important role in nanotechnology. In this thesis, we propose such a technique – thermal tweezers. In thermal tweezers, adparticles are redistributed by localised heating of the surface. This locally enhances surface diffusion of adparticles so that they rapidly diffuse away from the heated regions. Using this technique, the redistribution of adparticles to form a desired pattern is achieved by heating the surface at specific regions. In this project, we have focussed on the holographic implementation of this approach, where the surface is heated by holographic patterns of interfering pulsed laser beams. This implementation is suitable for the formation of arbitrarily shaped structures; the only condition is that the shape can be produced by holographic means. In the simplest case, the laser pulses are linearly polarised and intersect to form an interference pattern that is a modulation of intensity along a single direction. Strong optical absorption at the intensity maxima of the interference pattern results in approximately a sinusoidal variation of the surface temperature along one direction. The main aim of this research project is to investigate the feasibility of the holographic implementation of thermal tweezers as an adparticle manipulation technique. Firstly, we investigate theoretically the surface diffusion of adparticles in the presence of sinusoidal modulation of the surface temperature. Very strong redistribution of adparticles is predicted when there is strong interaction between the adparticle and the surface, and the amplitude of the temperature modulation is ~100 K. We have proposed a thin metallic film deposited on a glass substrate heated by interfering laser beams (optical wavelengths) as a means of generating very large amplitude of surface temperature modulation. Indeed, we predict theoretically by numerical solution of the thermal conduction equation that amplitude of the temperature modulation on the metallic film can be much greater than 100 K when heated by nanosecond pulses with an energy ~1 mJ. The formation of surface nanostructures of less than 100 nm in width is predicted at optical wavelengths in this implementation of thermal tweezers. Furthermore, we propose a simple extension to this technique where spatial phase shift of the temperature modulation effectively doubles or triples the resolution. At the same time, increased resolution is predicted by reducing the wavelength of the laser pulses. In addition, we present two distinctly different, computationally efficient numerical approaches for theoretical investigation of surface diffusion of interacting adparticles – the Monte Carlo Interaction Method (MCIM) and the random potential well method (RPWM). Using each of these approaches we have investigated thermal tweezers for redistribution of both strongly and weakly interacting adparticles. We have predicted that strong interactions between adparticles can increase the effectiveness of thermal tweezers, by demonstrating practically complete adparticle redistribution into the low temperature regions of the surface. This is promising from the point of view of thermal tweezers applied to directed self-assembly of nanostructures. Finally, we present a new and more efficient numerical approach to theoretical investigation of thermal tweezers of non-interacting adparticles. In this approach, the local diffusion coefficient is determined from solution of the Fokker-Planck equation. The diffusion equation is then solved numerically using the finite volume method (FVM) to directly obtain the probability density of adparticle position. We compare predictions of this approach to those of the Ermak algorithm solution of the Langevin equation, and relatively good agreement is shown at intermediate and high friction. In the low friction regime, we predict and investigate the phenomenon of ‘optimal’ friction and describe its occurrence due to very long jumps of adparticles as they diffuse from the hot regions of the surface. Future research directions, both theoretical and experimental are also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mol­ecules of the title compound, C16H16O2, display an intra­molecular O—HO hydrogen bond between the hydroxyl donor and the ketone acceptor. Inter­molecular C—Hπ inter­actions connect adjacent mol­ecules into chains that propagate parallel to the ac diagonal. The chains are arranged in sheets, and mol­ecules in adjacent sheets inter­act via inter­molecular O—HO hydrogen bonds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 1:1 proton-transfer compounds of L-tartaric acid with 3-aminopyridine [3-aminopyridinium hydrogen (2R,3R)-tartrate dihydrate, C5H7N2+·C4H5O6-·2H2O, (I)], pyridine-3-carboxylic acid (nicotinic acid) [anhydrous 3-carboxypyridinium hydrogen (2R,3R)-tartrate, C6H6NO2+·C4H5O6-, (II)] and pyridine-2-carboxylic acid [2-carboxypyridinium hydrogen (2R,3R)-tartrate monohydrate, C6H6NO2+·C4H5O6-·H2O, (III)] have been determined. In (I) and (II), there is a direct pyridinium-carboxyl N+-HO hydrogen-bonding interaction, four-centred in (II), giving conjoint cyclic R12(5) associations. In contrast, the N-HO association in (III) is with a water O-atom acceptor, which provides links to separate tartrate anions through Ohydroxy acceptors. All three compounds have the head-to-tail C(7) hydrogen-bonded chain substructures commonly associated with 1:1 proton-transfer hydrogen tartrate salts. These chains are extended into two-dimensional sheets which, in hydrates (I) and (III) additionally involve the solvent water molecules. Three-dimensional hydrogen-bonded structures are generated via crosslinking through the associative functional groups of the substituted pyridinium cations. In the sheet struture of (I), both water molecules act as donors and acceptors in interactions with separate carboxyl and hydroxy O-atom acceptors of the primary tartrate chains, closing conjoint cyclic R44(8), R34(11) and R33(12) associations. Also, in (II) and (III) there are strong cation carboxyl-carboxyl O-HO hydrogen bonds [OO = 2.5387 (17) Å in (II) and 2.441 (3) Å in (III)], which in (II) form part of a cyclic R22(6) inter-sheet association. This series of heteroaromatic Lewis base-hydrogen L-tartrate salts provides further examples of molecular assembly facilitated by the presence of the classical two-dimensional hydrogen-bonded hydrogen tartrate or hydrogen tartrate-water sheet substructures which are expanded into three-dimensional frameworks via peripheral cation bifunctional substituent-group crosslinking interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Near-infrared spectroscopy is a somewhat unutilised technique for the study of minerals. The technique has the ability to determine water content, hydroxyl groups and transition metals. In this paper we show the application of NIR spectroscopy to the study of selected minerals. The structure and spectral properties of two Cu-tellurite minerals graemite and teineite are compared with bismuth containing tellurite mineral smirnite by the application of NIR and IR spectroscopy. The position of Cu2+ bands and their splitting in the electronic spectra of tellurites are in conformity with octahedral geometry distortion. The spectral pattern of smirnite resembles graemite and the observed band at 10855 cm-1 with a weak shoulder at 7920 cm-1 is identified as due to Cu2+ ion. Any transition metal impurities may be identified by their bands in this spectral region. Three prominent bands observed in the region of 7200-6500 cm-1 are the overtones of water whilst the weak bands observed near 6200 cm-1in tellurites may be attributed to the hydrogen bonding between (TeO3)2- and H2O. The observation of a number of bands centred at around 7200 cm-1 confirms molecular water in tellurite minerals. A number of overlapping bands in the low wavenumbers 4500-4000 cm-1 is the result of combinational modes of (TeO3)2−ion. The appearance of the most intense peak at 5200 cm-1 with a pair of weak bands near 6000 cm-1 is a common feature in all the spectra and is related to the combinations of OH vibrations of water molecules, and bending vibrations ν2 (δ H2O). Bending vibrations δ H2O observed in the IR spectra shows a single band for smirnite at 1610 cm-1. The resolution of this band into number of components is evidenced for non-equivalent types of molecular water in graemite and teineite. (TeO3)2- stretching vibrations are characterized by three main absorptions at 1080, 780 and 695 cm-1.