910 resultados para Differential dose–volume histogram


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis three measurements of top-antitop differential cross section at an energy in the center of mass of 7 TeV will be shown, as a function of the transverse momentum, the mass and the rapidity of the top-antitop system. The analysis has been carried over a data sample of about 5/fb recorded with the ATLAS detector. The events have been selected with a cut based approach in the "one lepton plus jets" channel, where the lepton can be either an electron or a muon. The most relevant backgrounds (multi-jet QCD and W+jets) have been extracted using data driven methods; the others (Z+ jets, diboson and single top) have been simulated with Monte Carlo techniques. The final, background-subtracted, distributions have been corrected, using unfolding methods, for the detector and selection effects. At the end, the results have been compared with the theoretical predictions. The measurements are dominated by the systematic uncertainties and show no relevant deviation from the Standard Model predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the years the Differential Quadrature (DQ) method has distinguished because of its high accuracy, straightforward implementation and general ap- plication to a variety of problems. There has been an increase in this topic by several researchers who experienced significant development in the last years. DQ is essentially a generalization of the popular Gaussian Quadrature (GQ) used for numerical integration functions. GQ approximates a finite in- tegral as a weighted sum of integrand values at selected points in a problem domain whereas DQ approximate the derivatives of a smooth function at a point as a weighted sum of function values at selected nodes. A direct appli- cation of this elegant methodology is to solve ordinary and partial differential equations. Furthermore in recent years the DQ formulation has been gener- alized in the weighting coefficients computations to let the approach to be more flexible and accurate. As a result it has been indicated as Generalized Differential Quadrature (GDQ) method. However the applicability of GDQ in its original form is still limited. It has been proven to fail for problems with strong material discontinuities as well as problems involving singularities and irregularities. On the other hand the very well-known Finite Element (FE) method could overcome these issues because it subdivides the computational domain into a certain number of elements in which the solution is calculated. Recently, some researchers have been studying a numerical technique which could use the advantages of the GDQ method and the advantages of FE method. This methodology has got different names among each research group, it will be indicated here as Generalized Differential Quadrature Finite Element Method (GDQFEM).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This PhD thesis presents two measurements of differential production cross section of top and anti-top pairs tt ̅ decaying in a lepton+jets final state. The normalize cross section is measured as a function of the top transverse momentum and the tt ̅ mass, transverse momentum and rapidity using the full 2011 proton-proton (pp) ATLAS data taking at a center of mass energy of √s=7 TeV and corresponding to an integrated luminosity of L=4.6 〖fb〗^(-1). The cross section is also measured at the particle level as a function of the hadronic top transverse momentum for highly energetic events using the full 2012 data taking at √s=8 TeV and with L=20 〖fb〗^(-1). The measured spectra are fully corrected for detector efficiency and resolution effects and are compared to several theoretical predictions showing a quite good agreement, depending on different spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent advent of Next-generation sequencing technologies has revolutionized the way of analyzing the genome. This innovation allows to get deeper information at a lower cost and in less time, and provides data that are discrete measurements. One of the most important applications with these data is the differential analysis, that is investigating if one gene exhibit a different expression level in correspondence of two (or more) biological conditions (such as disease states, treatments received and so on). As for the statistical analysis, the final aim will be statistical testing and for modeling these data the Negative Binomial distribution is considered the most adequate one especially because it allows for "over dispersion". However, the estimation of the dispersion parameter is a very delicate issue because few information are usually available for estimating it. Many strategies have been proposed, but they often result in procedures based on plug-in estimates, and in this thesis we show that this discrepancy between the estimation and the testing framework can lead to uncontrolled first-type errors. We propose a mixture model that allows each gene to share information with other genes that exhibit similar variability. Afterwards, three consistent statistical tests are developed for differential expression analysis. We show that the proposed method improves the sensitivity of detecting differentially expressed genes with respect to the common procedures, since it is the best one in reaching the nominal value for the first-type error, while keeping elevate power. The method is finally illustrated on prostate cancer RNA-seq data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is devoted to the study of Picard-Fuchs operators associated to one-parameter families of $n$-dimensional Calabi-Yau manifolds whose solutions are integrals of $(n,0)$-forms over locally constant $n$-cycles. Assuming additional conditions on these families, we describe algebraic properties of these operators which leads to the purely algebraic notion of operators of CY-type. rnMoreover, we present an explicit way to construct CY-type operators which have a linearly rigid monodromy tuple. Therefore, we first usernthe translation of the existence algorithm by N. Katz for rigid local systems to the level of tuples of matrices which was established by M. Dettweiler and S. Reiter. An appropriate translation to the level of differential operators yields families which contain operators of CY-type. rnConsidering additional operations, we are also able to construct special CY-type operators of degree four which have a non-linearly rigid monodromy tuple. This provides both previously known and new examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die vorliegende Arbeit widmet sich der Spektraltheorie von Differentialoperatoren auf metrischen Graphen und von indefiniten Differentialoperatoren auf beschränkten Gebieten. Sie besteht aus zwei Teilen. Im Ersten werden endliche, nicht notwendigerweise kompakte, metrische Graphen und die Hilberträume von quadratintegrierbaren Funktionen auf diesen betrachtet. Alle quasi-m-akkretiven Laplaceoperatoren auf solchen Graphen werden charakterisiert, und Abschätzungen an die negativen Eigenwerte selbstadjungierter Laplaceoperatoren werden hergeleitet. Weiterhin wird die Wohlgestelltheit eines gemischten Diffusions- und Transportproblems auf kompakten Graphen durch die Anwendung von Halbgruppenmethoden untersucht. Eine Verallgemeinerung des indefiniten Operators $-tfrac{d}{dx}sgn(x)tfrac{d}{dx}$ von Intervallen auf metrische Graphen wird eingeführt. Die Spektral- und Streutheorie der selbstadjungierten Realisierungen wird detailliert besprochen. Im zweiten Teil der Arbeit werden Operatoren untersucht, die mit indefiniten Formen der Art $langlegrad v, A(cdot)grad urangle$ mit $u,vin H_0^1(Omega)subset L^2(Omega)$ und $OmegasubsetR^d$ beschränkt, assoziiert sind. Das Eigenwertverhalten entspricht in Dimension $d=1$ einer verallgemeinerten Weylschen Asymptotik und für $dgeq 2$ werden Abschätzungen an die Eigenwerte bewiesen. Die Frage, wann indefinite Formmethoden für Dimensionen $dgeq 2$ anwendbar sind, bleibt offen und wird diskutiert.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il trattamento numerico dell'equazione di convezione-diffusione con le relative condizioni al bordo, comporta la risoluzione di sistemi lineari algebrici di grandi dimensioni in cui la matrice dei coefficienti è non simmetrica. Risolutori iterativi basati sul sottospazio di Krylov sono ampiamente utilizzati per questi sistemi lineari la cui risoluzione risulta particolarmente impegnativa nel caso di convezione dominante. In questa tesi vengono analizzate alcune strategie di precondizionamento, atte ad accelerare la convergenza di questi metodi iterativi. Vengono confrontati sperimentalmente precondizionatori molto noti come ILU e iterazioni di tipo inner-outer flessibile. Nel caso in cui i coefficienti del termine di convezione siano a variabili separabili, proponiamo una nuova strategia di precondizionamento basata sull'approssimazione, mediante equazione matriciale, dell'operatore differenziale di convezione-diffusione. L'azione di questo nuovo precondizionatore sfrutta in modo opportuno recenti risolutori efficienti per equazioni matriciali lineari. Vengono riportati numerosi esperimenti numerici per studiare la dipendenza della performance dei diversi risolutori dalla scelta del termine di convezione, e dai parametri di discretizzazione.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vielen Teilgebieten der Mathematik ist es w"{u}nschenswert, die Monodromiegruppe einer homogenen linearen Differenzialgleichung zu verstehen. Es sind nur wenige analytische Methoden zur Berechnung dieser Gruppe bekannt, daher entwickeln wir im ersten Teil dieser Arbeit eine numerische Methode zur Approximation ihrer Erzeuger.rnIm zweiten Abschnitt fassen wir die Grundlagen der Theorie der Uniformisierung Riemannscher Fl"achen und die der arithmetischen Fuchsschen Gruppen zusammen. Auss erdem erkl"aren wir, wie unsere numerische Methode bei der Bestimmung von uniformisierenden Differenzialgleichungen dienlich sein kann. F"ur arithmetische Fuchssche Gruppen mit zwei Erzeugern erhalten wir lokale Daten und freie Parameter von Lam'{e} Gleichungen, welche die zugeh"origen Riemannschen Fl"achen uniformisieren. rnIm dritten Teil geben wir einen kurzen Abriss zur homologischen Spiegelsymmetrie und f"uhren die $widehat{Gamma}$-Klasse ein. Wir erkl"aren wie diese genutzt werden kann, um eine Hodge-theoretische Version der Spiegelsymmetrie f"ur torische Varit"aten zu beweisen. Daraus gewinnen wir Vermutungen "uber die Monodromiegruppe $M$ von Picard-Fuchs Gleichungen von gewissen Familien $f:mathcal{X}rightarrow bbp^1$ von $n$-dimensionalen Calabi-Yau Variet"aten. Diese besagen erstens, dass bez"uglich einer nat"urlichen Basis die Monodromiematrizen in $M$ Eintr"age aus dem K"orper $bbq(zeta(2j+1)/(2 pi i)^{2j+1},j=1,ldots,lfloor (n-1)/2 rfloor)$ haben. Und zweitens, dass sich topologische Invarianten des Spiegelpartners einer generischen Faser von $f:mathcal{X}rightarrow bbp^1$ aus einem speziellen Element von $M$ rekonstruieren lassen. Schliess lich benutzen wir die im ersten Teil entwickelten Methoden zur Verifizierung dieser Vermutungen, vornehmlich in Hinblick auf Dimension drei. Dar"uber hinaus erstellen wir eine Liste von Kandidaten topologischer Invarianten von vermutlich existierenden dreidimensionalen Calabi-Yau Variet"aten mit $h^{1,1}=1$.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Top quark studies play an important role in the physics program of the Large Hadron Collider (LHC). The energy and luminosity reached allow the acquisition of a large amount of data especially in kinematic regions never studied before. In this thesis is presented the measurement of the ttbar production differential cross section on data collected by ATLAS in 2012 in proton proton collisions at \sqrt{s} = 8 TeV, corresponding to an integrated luminosity of 20.3 fb^{−1}. The measurement is performed for ttbar events in the semileptonic channel where the hadronically decaying top quark has a transverse momentum above 300 GeV. The hadronic top quark decay is reconstructed as a single large radius jet and identified using jet substructure properties. The final differential cross section result has been compared with several theoretical distributions obtaining a discrepancy of about the 25% between data and predictions, depending on the MC generator. Furthermore the kinematic distributions of the ttbar production process are very sensitive to the choice of the parton distribution function (PDF) set used in the simulations and could provide constraints on gluons PDF. In particular in this thesis is performed a systematic study on the PDF of the protons, varying several PDF sets and checking which one better describes the experimental distributions. The boosted techniques applied in this measurement will be fundamental in the next data taking at \sqrt{s}=13 TeV when will be produced a large amount of heavy particles with high momentum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In questa tesi si mostrano alcune applicazioni degli integrali ellittici nella meccanica Hamiltoniana, allo scopo di risolvere i sistemi integrabili. Vengono descritte le funzioni ellittiche, in particolare la funzione ellittica di Weierstrass, ed elenchiamo i tipi di integrali ellittici costruendoli dalle funzioni di Weierstrass. Dopo aver considerato le basi della meccanica Hamiltoniana ed il teorema di Arnold Liouville, studiamo un esempio preso dal libro di Moser-Integrable Hamiltonian Systems and Spectral Theory, dove si prendono in considerazione i sistemi integrabili lungo la geodetica di un'ellissoide, e il sistema di Von Neumann. In particolare vediamo che nel caso n=2 abbiamo un integrale ellittico.