994 resultados para Climate Engineering
Resumo:
Este libro considera los factores responsables del cambio climático, las consecuencias geográficas, biológicas, económicas, legales y culturales de tal cambio. Los temas del libro son: Introducción al cambio climático global, historia del cambio climático, las causas del clima, el mundo del mañana (simulación por ordenador), los efectos biológicos de la mayor concentración de dióxido de carbono, la biosfera y el cambio climático, transporte público y energía (combustibles alternativos para el transporte), energías renovables, el sector industrial, economía del cambio climático, el cambio climático y la ley, el cambio climático y la respuesta humana.
Resumo:
Novela de la escritora inglesa Hilary Mantel que narra la historia de la familia Eldred. Ralph y Anna Eldred viven en una gran casa roja en Norfolk junto a sus cuatro hijos, donde acogen temporalmente a niños con problemas del Este de Londres. Una vida de aparente normalidad que esconde una profunda crisis familiar que tiene sus raíces en su estancia como misioneros en Sudáfrica y Botswana, en las terribles tragedias africanas que han dado forma al resto de sus vidas y que se niegan a quedarse atrás, amenazando con destruir la frágil paz que han logrado construir para ellos y sus hijos..
Resumo:
Monográfico con el título: 'Aprendizaje basado en problemas'.Resumen tomado de la publicación
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Resumen tomado de la publicación
Resumo:
Resumen tomado de la publicación
Resumo:
We assessed the importance of temperature, salinity, and predation for the size structure of zooplankton and provided insight into the future ecological structure and function of shallow lakes in a warmer climate. Artificial plants were introduced in eight comparable coastal shallow brackish lakes located at two contrasting temperatures: cold-temperate and Mediterranean climate region. Zooplankton, fish, and macroinvertebrates were sampled within the plants and at open-water habitats. The fish communities of these brackish lakes were characterized by small-sized individuals, highly associated with submerged plants. Overall, higher densities of small planktivorous fish were recorded in the Mediterranean compared to the cold-temperate region, likely reflecting temperature-related differences as have been observed in freshwater lakes. Our results suggest that fish predation is the major control of zooplankton size structure in brackish lakes, since fish density was related to a decrease in mean body size and density of zooplankton and this was reflected in a unimodal shaped biomass-size spectrum with dominance of small sizes and low size diversity. Salinity might play a more indirect role by shaping zooplankton communities toward more salt-tolerant species. In a global-warming perspective, these results suggest that changes in the trophic structure of shallow lakes in temperate regions might be expected as a result of the warmer temperatures and the potentially associated increases in salinity. The decrease in the density of largebodied zooplankton might reduce the grazing on phytoplankton and thus the chances of maintaining the clear water state in these ecosystems
Resumo:
This paper discusses an ongoing project that aims at improving the potential for resilience of a system responsible for the planning of rail engineering work delivery. It focuses on the use of a human factors based approach as a way to achieve this end. In particular, the paper discusses the initial data collected by means of interviews and how this process gave way to a two fold goal: Understanding how the planning process works in reality and identifying any critical aspects of the system from a Resilience Engineering perspective. Given the nature of the process under study, information flows and communication issues have been given particular attention throughout the data collection and analysis stages. Initial data confirms that the planning process is greatly reliant on the capability of people using their knowledge and skills to communicate in a dynamic informational environment. Finally, the added value of the interviews is discussed from a human factors perspective and as a mean towards the aim of better understanding resilience in rail engineering planning.
Resumo:
This paper discusses an ongoing project that aims at improving the potential for resilience of a system responsible for the planning of rail engineering work delivery. This is being addressed by means of a methodology based on the observation and analysis of “real” planning activities, using resilience engineering concepts as a background. Interviews with planners have been carried out to provide an overview of the planning process and steer more in-depth investigation. Analysis of historic information and observation of planners’ main activities is underway. Given the nature of the process under study, information flows and communication issues have been given particular attention throughout the data collection and analysis stages. Initial data confirms that the planning process is greatly reliant on the capability of people using their knowledge and skills to communicate in a dynamic informational environment. Evidence was found of communication breakdowns at the boundaries of different planning levels and teams. The fact that the process is divided amongst several different areas of the organisation, often with different goals and needs, creates potential sources of conflict and tension.
Resumo:
Much of the published human factors work on risk is to do with safety and within this is concerned with prediction and analysis of human error and with human reliability assessment. Less has been published on human factors contributions to understanding and managing project, business, engineering and other forms of risk and still less jointly assessing risk to do with broad issues of ‘safety’ and broad issues of ‘production’ or ‘performance’. This paper contains a general commentary on human factors and assessment of risk of various kinds, in the context of the aims of ergonomics and concerns about being too risk averse. The paper then describes a specific project, in rail engineering, where the notion of a human factors case has been employed to analyse engineering functions and related human factors issues. A human factors issues register for potential system disturbances has been developed, prior to a human factors risk assessment, which jointly covers safety and production (engineering delivery) concerns. The paper concludes with a commentary on the potential relevance of a resilience engineering perspective to understanding rail engineering systems risk. Design, planning and management of complex systems will increasingly have to address the issue of making trade-offs between safety and production, and ergonomics should be central to this. The paper addresses the relevant issues and does so in an under-published domain – rail systems engineering work.