958 resultados para Binary Asteroids


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monte Carlo simulations of a binary alloy with impurity concentrations between 20 and 45 at.% have been carried out. The proportion of large clusters relative to that of small clusters increases with the number of MC diffusion steps as well as impurity concentration. Magnetic susceptibility peaks become more prominent and occur at higher temperatures with increasing impurity concentration. The different peaks in the susceptibility and specific heat curves seem to correspond to different sized clusters. A freezing model would explain the observed behaviour with the large clusters freezing first and the small clusters contributing to susceptibility (specific heat) peaks at lower temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Age estimation from facial images is increasingly receiving attention to solve age-based access control, age-adaptive targeted marketing, amongst other applications. Since even humans can be induced in error due to the complex biological processes involved, finding a robust method remains a research challenge today. In this paper, we propose a new framework for the integration of Active Appearance Models (AAM), Local Binary Patterns (LBP), Gabor wavelets (GW) and Local Phase Quantization (LPQ) in order to obtain a highly discriminative feature representation which is able to model shape, appearance, wrinkles and skin spots. In addition, this paper proposes a novel flexible hierarchical age estimation approach consisting of a multi-class Support Vector Machine (SVM) to classify a subject into an age group followed by a Support Vector Regression (SVR) to estimate a specific age. The errors that may happen in the classification step, caused by the hard boundaries between age classes, are compensated in the specific age estimation by a flexible overlapping of the age ranges. The performance of the proposed approach was evaluated on FG-NET Aging and MORPH Album 2 datasets and a mean absolute error (MAE) of 4.50 and 5.86 years was achieved respectively. The robustness of the proposed approach was also evaluated on a merge of both datasets and a MAE of 5.20 years was achieved. Furthermore, we have also compared the age estimation made by humans with the proposed approach and it has shown that the machine outperforms humans. The proposed approach is competitive with current state-of-the-art and it provides an additional robustness to blur, lighting and expression variance brought about by the local phase features.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shear flows of inelastic spheres in three dimensions in the Volume fraction range 0.4-0.64 are analysed using event-driven simulations.Particle interactions are considered to be due to instantaneous binary collisions, and the collision model has a normal coefficient of restitution e(n) (negative of the ratio of the post- and pre-collisional relative velocities of the particles along the line joining the centres) and a tangential coefficient of restitution e(t) (negative of the ratio of post- and pre-collisional velocities perpendicular to the line Joining the centres). Here, we have considered both e(t) = +1 and e(t) = e(n) (rough particles) and e(t) =-1 (smooth particles), and the normal coefficient of restitution e(n) was varied in the range 0.6-0.98. Care was taken to avoid inelastic collapse and ensure there are no particle overlaps during the simulation. First, we studied the ordering in the system by examining the icosahedral order parameter Q(6) in three dimensions and the planar order parameter q(6) in the plane perpendicular to the gradient direction. It was found that for shear flows of sufficiently large size, the system Continues to be in the random state, with Q(6) and q(6) close to 0, even for volume fractions between phi = 0.5 and phi = 0.6; in contrast, for a system of elastic particles in the absence of shear, the system orders (crystallizes) at phi = 0.49. This indicates that the shear flow prevents ordering in a system of sufficiently large size. In a shear flow of inelastic particles, the strain rate and the temperature are related through the energy balance equation, and all time scales can be non-dimensionalized by the inverse of the strain rate. Therefore, the dynamics of the system are determined only by the volume fraction and the coefficients of restitution. The variation of the collision frequency with volume fraction and coefficient of estitution was examined. It was found, by plotting the inverse of the collision frequency as a function of volume fraction, that the collision frequency at constant strain rate diverges at a volume fraction phi(ad) (volume fraction for arrested dynamics) which is lower than the random close-packing Volume fraction 0.64 in the absence of shear. The volume fraction phi(ad) decreases as the coefficient of restitution is decreased from e(n) = 1; phi(ad) has a minimum of about 0.585 for coefficient of restitution e(n) in the range 0.6-0.8 for rough particles and is slightly larger for smooth particles. It is found that the dissipation rate and all components of the stress diverge proportional to the collision frequency in the close-packing limit. The qualitative behaviour of the increase in the stress and dissipation rate are well Captured by results derived from kinetic theory, but the quantitative agreement is lacking even if the collision frequency obtained from simulations is used to calculate the pair correlation function used In the theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distribution of relative velocities between colliding particles in shear flows of inelastic spheres is analysed in the Volume fraction range 0.4-0.64. Particle interactions are considered to be due to instantaneous binary collisions, and the collision model has a normal coefficient of restitution e(n) (negative of the ratio of the post- and pre-collisional relative velocities of the particles along the line joining the centres) and a tangential coefficient of restitution e(t) (negative of the ratio of post- and pre-collisional velocities perpendicular to line joining the centres). The distribution or pre-collisional normal relative velocities (along the line Joining the centres of the particles) is Found to be an exponential distribution for particles with low normal coefficient of restitution in the range 0.6-0.7. This is in contrast to the Gaussian distribution for the normal relative velocity in all elastic fluid in the absence of shear. A composite distribution function, which consists of an exponential and a Gaussian component, is proposed to span the range of inelasticities considered here. In the case of roughd particles, the relative velocity tangential to the surfaces at contact is also evaluated, and it is found to be close to a Gaussian distribution even for highly inelastic particles.Empirical relations are formulated for the relative velocity distribution. These are used to calculate the collisional contributions to the pressure, shear stress and the energy dissipation rate in a shear flow. The results of the calculation were round to be in quantitative agreement with simulation results, even for low coefficients of restitution for which the predictions obtained using the Enskog approximation are in error by an order of magnitude. The results are also applied to the flow down an inclined plane, to predict the angle of repose and the variation of the volume fraction with angle of inclination. These results are also found to be in quantitative agreement with previous simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dendrite structures of ice produced on undirectional solidification of ternary and quaternary aqueous solutions have been studied. Upon freezing, solutions containing more than one solute produce plate-shaped dendrites of ice. The spacing between dendrites increase linearly with the distance from the chill surface and the square root of local solidification time (or square root of inverse freezing rate) for any fixed composition. For fixed freezing conditions, the dendrite spacings from multicomponent aqueous solutions were a function of the concentrations and diffusion coefficients of the individual solutes. The dendrite spacing produced by freezing of a solution was changed by the addition of a solute different from those already present. If the main diffusion coefficient of the added solute is higher than that of solutes already present, the dendrite spacing is increased and vice versa. The dendrite spacing in multi-component systems increases with the total solute concentration if the constituent solutes are present in equal amounts. The dendrite spacing obtained on freezing of these dilute multicomponent solutions can be expressed by regression equations of the type Image Full-size image (2K) where L is the dendrite spacing in microns, C1, C2 and C3 are concentrations of individual solutes, Θf is the total freezing time and A1 −A8 are constants. A Yates analysis of the dendrite spacings in a factorial design of quaternary solutions indicates that there are strong interactions between individual solutes in regard to their effect on the dendrite spacings. A mass transport analysis has been used to calculate the interdendritic supersaturation ΔC of the individual solutes, the supercooling in the interdendritic liquid ΔT, and the transverse growth velocity of the dendrites, VT. In ternary solutions if two solutes are present in equal amount the supersaturation of the solute with higher main diffusion coefficient is lower, and vice versa. If a solute with higher main diffusion coefficient is added to a binary solution, the interface growth velocity, the interdendritic supersaturation of the base solute and the interdendritic supercooling increase with the quantity of solute added.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motivated by the analysis of the Australian Grain Insect Resistance Database (AGIRD), we develop a Bayesian hurdle modelling approach to assess trends in strong resistance of stored grain insects to phosphine over time. The binary response variable from AGIRD indicating presence or absence of strong resistance is characterized by a majority of absence observations and the hurdle model is a two step approach that is useful when analyzing such a binary response dataset. The proposed hurdle model utilizes Bayesian classification trees to firstly identify covariates and covariate levels pertaining to possible presence or absence of strong resistance. Secondly, generalized additive models (GAMs) with spike and slab priors for variable selection are fitted to the subset of the dataset identified from the Bayesian classification tree indicating possibility of presence of strong resistance. From the GAM we assess trends, biosecurity issues and site specific variables influencing the presence of strong resistance using a variable selection approach. The proposed Bayesian hurdle model is compared to its frequentist counterpart, and also to a naive Bayesian approach which fits a GAM to the entire dataset. The Bayesian hurdle model has the benefit of providing a set of good trees for use in the first step and appears to provide enough flexibility to represent the influence of variables on strong resistance compared to the frequentist model, but also captures the subtle changes in the trend that are missed by the frequentist and naive Bayesian models. © 2014 Springer Science+Business Media New York.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reproduction records from 2137 cows first mated at 2 years of age and recorded through to 8.5 years of age were used to study the genetics of early and lifetime reproductive performance from two genotypes (1020 Brahman and 1117 Tropical Composite) in tropical Australian production systems. Regular ultrasound scanning of the reproductive tract, coupled with full recording of mating, calving and weaning histories, allowed a comprehensive evaluation of a range of reproductive traits. Results showed components traits of early reproductive performance had moderate to high heritabilities, especially in Brahmans. The heritability of lactation anoestrous interval in 3-year-old cows was 0.51 +/- 0.18 and 0.26 +/- 0.11 for Brahman and Tropical Composite, respectively. Heritabilities of binary reproductive output traits (conception rate, pregnancy rate, calving rate and weaning rate) from first and second matings were generally moderate to high on the underlying scale. Estimates ranged from 0.15 to 0.69 in Brahman and 0.15 to 0.34 in Tropical Composite, but were considerably lower when expressed on the observed scale, particularly for those traits with high mean levels. Heritabilities of lifetime reproduction traits were low, with estimates of 0.11 +/- 0.06 and 0.07 +/- 0.06 for lifetime annual weaning rate in Brahman and Tropical Composite, respectively. Significant differences in mean reproductive performance were observed between the two genotypes, especially for traits associated with anoestrus in first-lactation cows. Genetic correlations between early-in-life reproductive measures and lifetime reproduction traits were moderate to high. Genetic correlations between lactation anoestrous interval and lifetime annual weaning rate were -0.62 +/- 0.24 in Brahman and -0.87 +/- 0.32 in Tropical Composite. The results emphasise the substantial opportunity that exists to genetically improve weaning rates in tropical beef cattle breeds by focusing recording and selection on early-in-life female reproduction traits, particularly in Brahman for traits associated with lactation anoestrus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eutrophication of the Baltic Sea is a serious problem. This thesis estimates the benefit to Finns from reduced eutrophication in the Gulf of Finland, the most eutrophied part of the Baltic Sea, by applying the choice experiment method, which belongs to the family of stated preference methods. Because stated preference methods have been subject to criticism, e.g., due to their hypothetical survey context, this thesis contributes to the discussion by studying two anomalies that may lead to biased welfare estimates: respondent uncertainty and preference discontinuity. The former refers to the difficulty of stating one s preferences for an environmental good in a hypothetical context. The latter implies a departure from the continuity assumption of conventional consumer theory, which forms the basis for the method and the analysis. In the three essays of the thesis, discrete choice data are analyzed with the multinomial logit and mixed logit models. On average, Finns are willing to contribute to the water quality improvement. The probability for willingness increases with residential or recreational contact with the gulf, higher than average income, younger than average age, and the absence of dependent children in the household. On average, for Finns the relatively most important characteristic of water quality is water clarity followed by the desire for fewer occurrences of blue-green algae. For future nutrient reduction scenarios, the annual mean household willingness to pay estimates range from 271 to 448 and the aggregate welfare estimates for Finns range from 28 billion to 54 billion euros, depending on the model and the intensity of the reduction. Out of the respondents (N=726), 72.1% state in a follow-up question that they are either Certain or Quite certain about their answer when choosing the preferred alternative in the experiment. Based on the analysis of other follow-up questions and another sample (N=307), 10.4% of the respondents are identified as potentially having discontinuous preferences. In relation to both anomalies, the respondent- and questionnaire-specific variables are found among the underlying causes and a departure from standard analysis may improve the model fit and the efficiency of estimates, depending on the chosen modeling approach. The introduction of uncertainty about the future state of the Gulf increases the acceptance of the valuation scenario which may indicate an increased credibility of a proposed scenario. In conclusion, modeling preference heterogeneity is an essential part of the analysis of discrete choice data. The results regarding uncertainty in stating one s preferences and non-standard choice behavior are promising: accounting for these anomalies in the analysis may improve the precision of the estimates of benefit from reduced eutrophication in the Gulf of Finland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water-ethanol mixtures are commonly used in industry and house holds. However, quite surprisingly their molecular-level structure is still not completely understood. In particular, there is evidence that the local intermolecular geometries depend significantly on the concentration. The aim of this study was to gain information on the molecular-level structures of water-ethanol mixtures by two computational methods. The methods are classical molecular dynamics (MD), where the movement of molecules can be studied, and x-ray Compton scattering, in which the scattering cross section is sensitive to the electron momentum density. Firstly, the water-ethanol mixtures were studied with MD simulations, with the mixture concentration ranging from 0 to 100%. For the simulations well-established force fields were used for the water and ethanol molecules (TIP4P and OPLS-AA, respectively). Moreover, two models were used for ethanol, rigid and non-rigid. In the rigid model the intramolecular bond lengths are fixed, whereas in the non-rigid model the lengths are determined by harmonic potentials. Secondly, mixtures with three different concentrations employing both ethanol models were studied by calculating the experimentally observable x-ray quantity, the Compton profile. In the MD simulations a slight underestimation in the density was observed as compared to experiment. Furthermore, a positive excess of hydrogen bonding with water molecules and a negative one with ethanol was quantified. Also, the mixture was found more structured when the ethanol concentration was higher. Negligible differences in the results were found between the two ethanol models. In contrast, in the Compton scattering results a notable difference between the ethanol models was observed. For the rigid model the Compton profiles were similar for all the concentrations, but for the non-rigid model they were distinct. This leads to two possibilities of how the mixing occurs. Either the mixing is similar in all concentrations (as suggested by the rigid model) or the mixing changes for different concentrations (as suggested by the non-rigid model). Either way, this study shows that the choice of the force field is essential in the microscopic structure formation in the MD simulations. When the sources of uncertainty in the calculated Compton profiles were analyzed, it was found that more statistics needs to be collected to reduce the statistical uncertainty in the final results. The obtained Compton scattering results can be considered somewhat preliminary, but clearly indicative of the behaviour of the water-ethanol mixtures when the force field is modified. The next step is to collect more statistics and compare the results with experimental data to decide which ethanol model describes the mixture better. This way, valuable information on the microscopic structure of water-ethanol mixtures can be found. In addition, information on the force fields in the MD simulations and on the ability of the MD simulations to reproduce the microscopic structure of binary liquids is obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New glasses of 16.66SrO–16.66[(1 − x)Bi2O3–xSm2O3]–16.66Nb2O5–50Li2B4O7 (0 ≤ x ≤ 0.5, in molar ratio), i.e., the pseudo-binary Sm2O3-doped SrBi2Nb2O9–Li2B4O7 glass system, giving the crystallization of Sm3+-doped SrBi2Nb2O9 nanocrystals are developed. It is found that the thermal stability of the glasses against the crystallization and the optical band gap energy increases with increasing Sm2O3 content. The formation of fluorite-type Sm3+-doped SrBi2Nb2O9 nanocrystals (diameters: 13–37 nm) with a cubic structure is confirmed in the crystallized (530 °C, 3 h) samples from X-ray powder diffraction analyses, Raman scattering spectrum measurements, and transmission electron microscope observations. The effect of Sm3+-doping on the microstructure, Raman scattering peak positions, and dielectric properties of composites comprising of fluorite-type SrBi2Nb2O9 nanocrystals and the Li2B4O7 glassy phase is clarified. It is found that fluorite-type SrBi2Nb2O9 nanocrystals transform to stable perovskite-type SrBi2Nb2O9 crystals with an orthorhombic structure by heat treatments at around 630 °C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effective medium theory for a system with randomly distributed point conductivity and polarisability is reformulated, with attention to cross-terms involving the two disorder parameters. The treatment reveals a certain inconsistency of the conventional theory owing to the neglect of the Maxwell-Wagner effect. The results are significant for the critical resistivity and dielectric anomalies of a binary liquid mixture at the phase separation point.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A period timing device suitable for processing laser Doppler anemometer signals has been described here. The important features of this instrument are: it is inexpensive, simple to operate, and easy to fabricate. When the concentration of scattering particles is low the Doppler signal is in the form of a burst and the Doppler frequency is measured by timing the zero crossings of the signal. But the presence of noise calls for the use of validation criterion, and a 5–8 cycles comparison has been used in this instrument. Validation criterion requires the differential count between the 5 and 8 cycles to be multiplied by predetermined numbers that prescribe the accuracy of measurement. By choosing these numbers to be binary numbers, much simplification in circuit design has been accomplished since this permits the use of shift registers for multiplication. Validation accuracies of 1.6%, 3.2%, 6.3%, and 12.5% are possible with this device. The design presented here is for a 16-bit processor and uses TTL components. By substituting Schottky barrier TTLs the clock frequency can be increased from about 10 to 30 MHz resulting in an extension in the range of the instrument. Review of Scientific Instruments is copyrighted by The American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atomic layer deposition (ALD) is a method for thin film deposition which has been extensively studied for binary oxide thin film growth. Studies on multicomponent oxide growth by ALD remain relatively few owing to the increased number of factors that come into play when more than one metal is employed. More metal precursors are required, and the surface may change significantly during successive stages of the growth. Multicomponent oxide thin films can be prepared in a well-controlled way as long as the same principle that makes binary oxide ALD work so well is followed for each constituent element: in short, the film growth has to be self-limiting. ALD of various multicomponent oxides was studied. SrTiO3, BaTiO3, Ba(1-x)SrxTiO3 (BST), SrTa2O6, Bi4Ti3O12, BiTaO4 and SrBi2Ta2O9 (SBT) thin films were prepared, many of them for the first time by ALD. Chemistries of the binary oxides are shown to influence the processing of their multicomponent counterparts. The compatibility of precursor volatilities, thermal stabilities and reactivities is essential for multicomponent oxide ALD, but it should be noted that the main reactive species, the growing film itself, must also be compatible with self-limiting growth chemistry. In the cases of BaO and Bi2O3 the growth of the binary oxide was very difficult, but the presence of Ti or Ta in the growing film made self-limiting growth possible. The application of the deposited films as dielectric and ferroelectric materials was studied. Post-deposition annealing treatments in different atmospheres were used to achieve the desired crystalline phase or, more generally, to improve electrical properties. Electrode materials strongly influenced the leakage current densities in the prepared metal insulator metal (MIM) capacitors. Film permittivities above 100 and leakage current densities below 110-7 A/cm2 were achieved with several of the materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Certain binary codes having good autocorrelation properties akin to Barker codes are studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new technology – 3D printing – has the potential to make radical changes to aspects of the way in which we live. Put simply, it allows people to download designs and turn them into physical objects by laying down successive layers of material. Replacements or parts for household objects such as toys, utensils and gadgets could become available at the press of a button. With this innovation, however, comes the need to consider impacts on a wide range of forms of intellectual property, as Dr Matthew Rimmer explains. 3D Printing is the latest in a long line of disruptive technologies – including photocopiers, cassette recorders, MP3 players, personal computers, peer to peer networks, and wikis – which have challenged intellectual property laws, policies, practices, and norms. As The Economist has observed, ‘Tinkerers with machines that turn binary digits into molecules are pioneering a whole new way of making things—one that could well rewrite the rules of manufacturing in much the same way as the PC trashed the traditional world of computing.’