941 resultados para Bayesian priors


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrasound segmentation is a challenging problem due to the inherent speckle and some artifacts like shadows, attenuation and signal dropout. Existing methods need to include strong priors like shape priors or analytical intensity models to succeed in the segmentation. However, such priors tend to limit these methods to a specific target or imaging settings, and they are not always applicable to pathological cases. This work introduces a semi-supervised segmentation framework for ultrasound imaging that alleviates the limitation of fully automatic segmentation, that is, it is applicable to any kind of target and imaging settings. Our methodology uses a graph of image patches to represent the ultrasound image and user-assisted initialization with labels, which acts as soft priors. The segmentation problem is formulated as a continuous minimum cut problem and solved with an efficient optimization algorithm. We validate our segmentation framework on clinical ultrasound imaging (prostate, fetus, and tumors of the liver and eye). We obtain high similarity agreement with the ground truth provided by medical expert delineations in all applications (94% DICE values in average) and the proposed algorithm performs favorably with the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary (in English) Computer simulations provide a practical way to address scientific questions that would be otherwise intractable. In evolutionary biology, and in population genetics in particular, the investigation of evolutionary processes frequently involves the implementation of complex models, making simulations a particularly valuable tool in the area. In this thesis work, I explored three questions involving the geographical range expansion of populations, taking advantage of spatially explicit simulations coupled with approximate Bayesian computation. First, the neutral evolutionary history of the human spread around the world was investigated, leading to a surprisingly simple model: A straightforward diffusion process of migrations from east Africa throughout a world map with homogeneous landmasses replicated to very large extent the complex patterns observed in real human populations, suggesting a more continuous (as opposed to structured) view of the distribution of modern human genetic diversity, which may play a better role as a base model for further studies. Second, the postglacial evolution of the European barn owl, with the formation of a remarkable coat-color cline, was inspected with two rounds of simulations: (i) determine the demographic background history and (ii) test the probability of a phenotypic cline, like the one observed in the natural populations, to appear without natural selection. We verified that the modern barn owl population originated from a single Iberian refugium and that they formed their color cline, not due to neutral evolution, but with the necessary participation of selection. The third and last part of this thesis refers to a simulation-only study inspired by the barn owl case above. In this chapter, we showed that selection is, indeed, effective during range expansions and that it leaves a distinguished signature, which can then be used to detect and measure natural selection in range-expanding populations. Résumé (en français) Les simulations fournissent un moyen pratique pour répondre à des questions scientifiques qui seraient inabordable autrement. En génétique des populations, l'étude des processus évolutifs implique souvent la mise en oeuvre de modèles complexes, et les simulations sont un outil particulièrement précieux dans ce domaine. Dans cette thèse, j'ai exploré trois questions en utilisant des simulations spatialement explicites dans un cadre de calculs Bayésiens approximés (approximate Bayesian computation : ABC). Tout d'abord, l'histoire de la colonisation humaine mondiale et de l'évolution de parties neutres du génome a été étudiée grâce à un modèle étonnement simple. Un processus de diffusion des migrants de l'Afrique orientale à travers un monde avec des masses terrestres homogènes a reproduit, dans une très large mesure, les signatures génétiques complexes observées dans les populations humaines réelles. Un tel modèle continu (opposé à un modèle structuré en populations) pourrait être très utile comme modèle de base dans l'étude de génétique humaine à l'avenir. Deuxièmement, l'évolution postglaciaire d'un gradient de couleur chez l'Effraie des clocher (Tyto alba) Européenne, a été examiné avec deux séries de simulations pour : (i) déterminer l'histoire démographique de base et (ii) tester la probabilité qu'un gradient phénotypique, tel qu'observé dans les populations naturelles puisse apparaître sans sélection naturelle. Nous avons montré que la population actuelle des chouettes est sortie d'un unique refuge ibérique et que le gradient de couleur ne peux pas s'être formé de manière neutre (sans l'action de la sélection naturelle). La troisième partie de cette thèse se réfère à une étude par simulations inspirée par l'étude de l'Effraie. Dans ce dernier chapitre, nous avons montré que la sélection est, en effet, aussi efficace dans les cas d'expansion d'aire de distribution et qu'elle laisse une signature unique, qui peut être utilisée pour la détecter et estimer sa force.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the drivers of population divergence, speciation and species persistence is of great interest to molecular ecology, especially for species-rich radiations inhabiting the world's biodiversity hotspots. The toolbox of population genomics holds great promise for addressing these key issues, especially if genomic data are analysed within a spatially and ecologically explicit context. We have studied the earliest stages of the divergence continuum in the Restionaceae, a species-rich and ecologically important plant family of the Cape Floristic Region (CFR) of South Africa, using the widespread CFR endemic Restio capensis (L.) H.P. Linder & C.R. Hardy as an example. We studied diverging populations of this morphotaxon for plastid DNA sequences and >14 400 nuclear DNA polymorphisms from Restriction site Associated DNA (RAD) sequencing and analysed the results jointly with spatial, climatic and phytogeographic data, using a Bayesian generalized linear mixed modelling (GLMM) approach. The results indicate that population divergence across the extreme environmental mosaic of the CFR is mostly driven by isolation by environment (IBE) rather than isolation by distance (IBD) for both neutral and non-neutral markers, consistent with genome hitchhiking or coupling effects during early stages of divergence. Mixed modelling of plastid DNA and single divergent outlier loci from a Bayesian genome scan confirmed the predominant role of climate and pointed to additional drivers of divergence, such as drift and ecological agents of selection captured by phytogeographic zones. Our study demonstrates the usefulness of population genomics for disentangling the effects of IBD and IBE along the divergence continuum often found in species radiations across heterogeneous ecological landscapes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper follows on from earlier work [Taroni F and Aitken CGG. Probabilistic reasoning in the law, Part 1: assessment of probabilities and explanation of the value of DNA evidence. Science & Justice 1998; 38: 165-177]. Different explanations of the value of DNA evidence were presented to students from two schools of forensic science and to members of fifteen laboratories all around the world. The responses were divided into two groups; those which came from a school or laboratory identified as Bayesian and those which came from a school or laboratory identified as non-Bayesian. The paper analyses these responses using a likelihood approach. This approach is more consistent with a Bayesian analysis than one based on a frequentist approach, as was reported by Taroni F and Aitken CGG. [Probabilistic reasoning in the law, Part 1: assessment of probabilities and explanation of the value of DNA evidence] in Science & Justice 1998.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Loss-of-function variants in innate immunity genes are associated with Mendelian disorders in the form of primary immunodeficiencies. Recent resequencing projects report that stop-gains and frameshifts are collectively prevalent in humans and could be responsible for some of the inter-individual variability in innate immune response. Current computational approaches evaluating loss-of-function in genes carrying these variants rely on gene-level characteristics such as evolutionary conservation and functional redundancy across the genome. However, innate immunity genes represent a particular case because they are more likely to be under positive selection and duplicated. To create a ranking of severity that would be applicable to innate immunity genes we evaluated 17,764 stop-gain and 13,915 frameshift variants from the NHLBI Exome Sequencing Project and 1,000 Genomes Project. Sequence-based features such as loss of functional domains, isoform-specific truncation and nonsense-mediated decay were found to correlate with variant allele frequency and validated with gene expression data. We integrated these features in a Bayesian classification scheme and benchmarked its use in predicting pathogenic variants against Online Mendelian Inheritance in Man (OMIM) disease stop-gains and frameshifts. The classification scheme was applied in the assessment of 335 stop-gains and 236 frameshifts affecting 227 interferon-stimulated genes. The sequence-based score ranks variants in innate immunity genes according to their potential to cause disease, and complements existing gene-based pathogenicity scores. Specifically, the sequence-based score improves measurement of functional gene impairment, discriminates across different variants in a given gene and appears particularly useful for analysis of less conserved genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Des progrès significatifs ont été réalisés dans le domaine de l'intégration quantitative des données géophysique et hydrologique l'échelle locale. Cependant, l'extension à de plus grandes échelles des approches correspondantes constitue encore un défi majeur. Il est néanmoins extrêmement important de relever ce défi pour développer des modèles fiables de flux des eaux souterraines et de transport de contaminant. Pour résoudre ce problème, j'ai développé une technique d'intégration des données hydrogéophysiques basée sur une procédure bayésienne de simulation séquentielle en deux étapes. Cette procédure vise des problèmes à plus grande échelle. L'objectif est de simuler la distribution d'un paramètre hydraulique cible à partir, d'une part, de mesures d'un paramètre géophysique pertinent qui couvrent l'espace de manière exhaustive, mais avec une faible résolution (spatiale) et, d'autre part, de mesures locales de très haute résolution des mêmes paramètres géophysique et hydraulique. Pour cela, mon algorithme lie dans un premier temps les données géophysiques de faible et de haute résolution à travers une procédure de réduction déchelle. Les données géophysiques régionales réduites sont ensuite reliées au champ du paramètre hydraulique à haute résolution. J'illustre d'abord l'application de cette nouvelle approche dintégration des données à une base de données synthétiques réaliste. Celle-ci est constituée de mesures de conductivité hydraulique et électrique de haute résolution réalisées dans les mêmes forages ainsi que destimations des conductivités électriques obtenues à partir de mesures de tomographic de résistivité électrique (ERT) sur l'ensemble de l'espace. Ces dernières mesures ont une faible résolution spatiale. La viabilité globale de cette méthode est testée en effectuant les simulations de flux et de transport au travers du modèle original du champ de conductivité hydraulique ainsi que du modèle simulé. Les simulations sont alors comparées. Les résultats obtenus indiquent que la procédure dintégration des données proposée permet d'obtenir des estimations de la conductivité en adéquation avec la structure à grande échelle ainsi que des predictions fiables des caractéristiques de transports sur des distances de moyenne à grande échelle. Les résultats correspondant au scénario de terrain indiquent que l'approche d'intégration des données nouvellement mise au point est capable d'appréhender correctement les hétérogénéitées à petite échelle aussi bien que les tendances à gande échelle du champ hydraulique prévalent. Les résultats montrent également une flexibilté remarquable et une robustesse de cette nouvelle approche dintégration des données. De ce fait, elle est susceptible d'être appliquée à un large éventail de données géophysiques et hydrologiques, à toutes les gammes déchelles. Dans la deuxième partie de ma thèse, j'évalue en détail la viabilité du réechantillonnage geostatique séquentiel comme mécanisme de proposition pour les méthodes Markov Chain Monte Carlo (MCMC) appliquées à des probmes inverses géophysiques et hydrologiques de grande dimension . L'objectif est de permettre une quantification plus précise et plus réaliste des incertitudes associées aux modèles obtenus. En considérant une série dexemples de tomographic radar puits à puits, j'étudie deux classes de stratégies de rééchantillonnage spatial en considérant leur habilité à générer efficacement et précisément des réalisations de la distribution postérieure bayésienne. Les résultats obtenus montrent que, malgré sa popularité, le réechantillonnage séquentiel est plutôt inefficace à générer des échantillons postérieurs indépendants pour des études de cas synthétiques réalistes, notamment pour le cas assez communs et importants où il existe de fortes corrélations spatiales entre le modèle et les paramètres. Pour résoudre ce problème, j'ai développé un nouvelle approche de perturbation basée sur une déformation progressive. Cette approche est flexible en ce qui concerne le nombre de paramètres du modèle et lintensité de la perturbation. Par rapport au rééchantillonage séquentiel, cette nouvelle approche s'avère être très efficace pour diminuer le nombre requis d'itérations pour générer des échantillons indépendants à partir de la distribution postérieure bayésienne. - Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending corresponding approaches beyond the local scale still represents a major challenge, yet is critically important for the development of reliable groundwater flow and contaminant transport models. To address this issue, I have developed a hydrogeophysical data integration technique based on a two-step Bayesian sequential simulation procedure that is specifically targeted towards larger-scale problems. The objective is to simulate the distribution of a target hydraulic parameter based on spatially exhaustive, but poorly resolved, measurements of a pertinent geophysical parameter and locally highly resolved, but spatially sparse, measurements of the considered geophysical and hydraulic parameters. To this end, my algorithm links the low- and high-resolution geophysical data via a downscaling procedure before relating the downscaled regional-scale geophysical data to the high-resolution hydraulic parameter field. I first illustrate the application of this novel data integration approach to a realistic synthetic database consisting of collocated high-resolution borehole measurements of the hydraulic and electrical conductivities and spatially exhaustive, low-resolution electrical conductivity estimates obtained from electrical resistivity tomography (ERT). The overall viability of this method is tested and verified by performing and comparing flow and transport simulations through the original and simulated hydraulic conductivity fields. The corresponding results indicate that the proposed data integration procedure does indeed allow for obtaining faithful estimates of the larger-scale hydraulic conductivity structure and reliable predictions of the transport characteristics over medium- to regional-scale distances. The approach is then applied to a corresponding field scenario consisting of collocated high- resolution measurements of the electrical conductivity, as measured using a cone penetrometer testing (CPT) system, and the hydraulic conductivity, as estimated from electromagnetic flowmeter and slug test measurements, in combination with spatially exhaustive low-resolution electrical conductivity estimates obtained from surface-based electrical resistivity tomography (ERT). The corresponding results indicate that the newly developed data integration approach is indeed capable of adequately capturing both the small-scale heterogeneity as well as the larger-scale trend of the prevailing hydraulic conductivity field. The results also indicate that this novel data integration approach is remarkably flexible and robust and hence can be expected to be applicable to a wide range of geophysical and hydrological data at all scale ranges. In the second part of my thesis, I evaluate in detail the viability of sequential geostatistical resampling as a proposal mechanism for Markov Chain Monte Carlo (MCMC) methods applied to high-dimensional geophysical and hydrological inverse problems in order to allow for a more accurate and realistic quantification of the uncertainty associated with the thus inferred models. Focusing on a series of pertinent crosshole georadar tomographic examples, I investigated two classes of geostatistical resampling strategies with regard to their ability to efficiently and accurately generate independent realizations from the Bayesian posterior distribution. The corresponding results indicate that, despite its popularity, sequential resampling is rather inefficient at drawing independent posterior samples for realistic synthetic case studies, notably for the practically common and important scenario of pronounced spatial correlation between model parameters. To address this issue, I have developed a new gradual-deformation-based perturbation approach, which is flexible with regard to the number of model parameters as well as the perturbation strength. Compared to sequential resampling, this newly proposed approach was proven to be highly effective in decreasing the number of iterations required for drawing independent samples from the Bayesian posterior distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Els rius i rieres mediterranis són ecosistemes que es caracteritzen per fortes oscil•lacions de cabal i temperatura al llarg de l’any. Aquestes oscil•lacions provoquen canvis ambientals en l'hàbitat i en els recursos que afecten directament o indirecta la biota que habita aquests ecosistemes, la qual, per tant, ha de presentar adaptacions a aquestes oscil•lacions ambientals. L'escenari actual de canvi climàtic preveu una intensificació dels fenòmens de sequera i augment de temperatura. Entendre com la biota dels rius respon a aquestes fluctuacions és de gran importància per poder anticipar les respostes d'aquests sistemes als imminents canvis ambientals així com per gestionar adequadament els recursos hídrics en un futur. Els objectius principals d'aquesta tesi eren: caracteritzar estructural i funcionalment dues rieres intermitents mediterrànies al llarg dels diferents períodes característics del cicle anual i veure els efectes d'un augment de la sequera; veure com aquests efectes podien afectar l'ecosistema ripari circumdant i establir com diferències en la qualitat de la matèria orgànica derivades del canvi climàtic pot afectar el fitness i desenvolupament dels invertebrats. Aquests objectius s'han pogut complir només parcialment, ja que adversitats climàtiques van impedir finalitzar amb èxit la manipulació del cabal al camp i la resolució d'algunes dades no ha estat prou bona com per aplicar els models corresponents. Aquests contratemps s'han solucionat amb la incorporació de dos nous experiments (un encara s'ha de realitzar), fet que ha fet enlentir la finalització de la tesi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resume : L'utilisation de l'encre comme indice en sciences forensiques est décrite et encadrée par une littérature abondante, comprenant entre autres deux standards de l'American Society for Testing and Materials (ASTM). La grande majorité de cette littérature se préoccupe de l'analyse des caractéristiques physiques ou chimiques des encres. Les standards ASTM proposent quelques principes de base qui concernent la comparaison et l'interprétation de la valeur d'indice des encres en sciences forensiques. L'étude de cette littérature et plus particulièrement des standards ASTM, en ayant a l'esprit les développements intervenus dans le domaine de l'interprétation de l'indice forensique, montre qu'il existe un potentiel certain pour l'amélioration de l'utilisation de l'indice encre et de son impact dans l'enquête criminelle. Cette thèse propose d'interpréter l'indice encre en se basant sur le cadre défini par le théorème de Bayes. Cette proposition a nécessité le développement d'un système d'assurance qualité pour l'analyse et la comparaison d'échantillons d'encre. Ce système d'assurance qualité tire parti d'un cadre théorique nouvellement défini. La méthodologie qui est proposée dans ce travail a été testée de manière compréhensive, en tirant parti d'un set de données spécialement créer pour l'occasion et d'outils importés de la biométrie. Cette recherche répond de manière convaincante à un problème concret généralement rencontré en sciences forensiques. L'information fournie par le criminaliste, lors de l'examen de traces, est souvent bridée, car celui-ci essaie de répondre à la mauvaise question. L'utilisation d'un cadre théorique explicite qui définit et formalise le goal de l'examen criminaliste, permet de déterminer les besoins technologiques et en matière de données. Le développement de cette technologie et la collection des données pertinentes peut être justifiées économiquement et achevée de manière scientifique. Abstract : The contribution of ink evidence to forensic science is described and supported by an abundant literature and by two standards from the American Society for Testing and Materials (ASTM). The vast majority of the available literature is concerned with the physical and chemical analysis of ink evidence. The relevant ASTM standards mention some principles regarding the comparison of pairs of ink samples and the evaluation of their evidential value. The review of this literature and, more specifically, of the ASTM standards in the light of recent developments in the interpretation of forensic evidence has shown some potential improvements, which would maximise the benefits of the use of ink evidence in forensic science. This thesis proposes to interpret ink evidence using the widely accepted and recommended Bayesian theorem. This proposition has required the development of a new quality assurance process for the analysis and comparison of ink samples, as well as of the definition of a theoretical framework for ink evidence. The proposed technology has been extensively tested using a large dataset of ink samples and state of the art tools, commonly used in biometry. Overall, this research successfully answers to a concrete problem generally encountered in forensic science, where scientists tend to self-limit the usefulness of the information that is present in various types of evidence, by trying to answer to the wrong questions. The declaration of an explicit framework, which defines and formalises their goals and expected contributions to the criminal and civil justice system, enables the determination of their needs in terms of technology and data. The development of this technology and the collection of the data is then justified economically, structured scientifically and can be proceeded efficiently.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La localització d'òrgans és un tòpic important en l'àmbit de la imatge mèdica per l'ajuda del tractament i diagnosi del càncer. Un exemple es pot trobar en la cal•libració de models farmacoquinètics. Aquesta pot ésser realitzada utilitzant un teixit de referència, on, per exemple en imatges de ressonància magnètica de pit, una correcta segmentació del múscul pectoral és necessària per a la detecció de signes de malignitat. Els mètodes de segmentació basat en atlas han estat altament avaluats en imatge de ressonància magnètica de cervell, obtenint resultats satisfactoris. En aquest projecte, en col•laboració amb el el Diagnostic Image Analysis Group de la Radboud University Nijmegen Medical Centre i la supervisió del Dr. N.Karssemeijer, es presenta la primera aproximació d'un mètode de segmentació basat en atlas per segmentar els diferents teixits visibles en imatges de ressonància magnètica (T1) del pit femení. L'atlas consisteix en 5 estructures (teixit greixòs, teixit dens, cor, pulmons i múscul pectoral) i ha estat utilitzat en un algorisme de segmentació Bayesià per tal de delinear les esmentades estructures. A més a més, s'ha dut a terme una comparació entre un mètode de registre global i un de local, utilitzats tant en la construcció de l'atlas com en la fase de segmentació, essent el primer el que ha presentat millors resultats en termes d'eficiència i precisió. Per a l'avaluació, s'ha dut a terme una comparació visual i numèrica entre les segmentacions obtingudes i les realitzades manualment pels experts col•laboradors. Pel que fa a la numèrica, s'ha emprat el coeficient de similitud de Dice ( mesura que dóna valors entre 0 i 1, on 0 significa no similitud i 1 similitud màxima) i s'ha obtingut una mitjana general de 0.8. Aquest resultat confirma la validesa del mètode presentat per a la segmentació d'imatges de ressonància magnètica del pit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT: Invasive candidiasis is a frequent life-threatening complication in critically ill patients. Early diagnosis followed by prompt treatment aimed at improving outcome by minimizing unnecessary antifungal use remains a major challenge in the ICU setting. Timely patient selection thus plays a key role for clinically efficient and cost-effective management. Approaches combining clinical risk factors and Candida colonization data have improved our ability to identify such patients early. While the negative predictive value of scores and predicting rules is up to 95 to 99%, the positive predictive value is much lower, ranging between 10 and 60%. Accordingly, if a positive score or rule is used to guide the start of antifungal therapy, many patients may be treated unnecessarily. Candida biomarkers display higher positive predictive values; however, they lack sensitivity and are thus not able to identify all cases of invasive candidiasis. The (1→3)-β-D-glucan (BG) assay, a panfungal antigen test, is recommended as a complementary tool for the diagnosis of invasive mycoses in high-risk hemato-oncological patients. Its role in the more heterogeneous ICU population remains to be defined. More efficient clinical selection strategies combined with performant laboratory tools are needed in order to treat the right patients at the right time by keeping costs of screening and therapy as low as possible. The new approach proposed by Posteraro and colleagues in the previous issue of Critical Care meets these requirements. A single positive BG value in medical patients admitted to the ICU with sepsis and expected to stay for more than 5 days preceded the documentation of candidemia by 1 to 3 days with an unprecedented diagnostic accuracy. Applying this one-point fungal screening on a selected subset of ICU patients with an estimated 15 to 20% risk of developing candidemia is an appealing and potentially cost-effective approach. If confirmed by multicenter investigations, and extended to surgical patients at high risk of invasive candidiasis after abdominal surgery, this Bayesian-based risk stratification approach aimed at maximizing clinical efficiency by minimizing health care resource utilization may substantially simplify the management of critically ill patients at risk of invasive candidiasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The identification of genetically homogeneous groups of individuals is a long standing issue in population genetics. A recent Bayesian algorithm implemented in the software STRUCTURE allows the identification of such groups. However, the ability of this algorithm to detect the true number of clusters (K) in a sample of individuals when patterns of dispersal among populations are not homogeneous has not been tested. The goal of this study is to carry out such tests, using various dispersal scenarios from data generated with an individual-based model. We found that in most cases the estimated 'log probability of data' does not provide a correct estimation of the number of clusters, K. However, using an ad hoc statistic DeltaK based on the rate of change in the log probability of data between successive K values, we found that STRUCTURE accurately detects the uppermost hierarchical level of structure for the scenarios we tested. As might be expected, the results are sensitive to the type of genetic marker used (AFLP vs. microsatellite), the number of loci scored, the number of populations sampled, and the number of individuals typed in each sample.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Attrition in longitudinal studies can lead to biased results. The study is motivated by the unexpected observation that alcohol consumption decreased despite increased availability, which may be due to sample attrition of heavy drinkers. Several imputation methods have been proposed, but rarely compared in longitudinal studies of alcohol consumption. The imputation of consumption level measurements is computationally particularly challenging due to alcohol consumption being a semi-continuous variable (dichotomous drinking status and continuous volume among drinkers), and the non-normality of data in the continuous part. Data come from a longitudinal study in Denmark with four waves (2003-2006) and 1771 individuals at baseline. Five techniques for missing data are compared: Last value carried forward (LVCF) was used as a single, and Hotdeck, Heckman modelling, multivariate imputation by chained equations (MICE), and a Bayesian approach as multiple imputation methods. Predictive mean matching was used to account for non-normality, where instead of imputing regression estimates, "real" observed values from similar cases are imputed. Methods were also compared by means of a simulated dataset. The simulation showed that the Bayesian approach yielded the most unbiased estimates for imputation. The finding of no increase in consumption levels despite a higher availability remained unaltered. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Genetic Investigation of Anthropometric Traits (GIANT) consortium identified 14 loci in European Ancestry (EA) individuals associated with waist-to-hip ratio (WHR) adjusted for body mass index. These loci are wide and narrowing the signals remains necessary. Twelve of 14 loci identified in GIANT EA samples retained strong associations with WHR in our joint EA/individuals of African Ancestry (AA) analysis (log-Bayes factor >6.1). Trans-ethnic analyses at five loci (TBX15-WARS2, LYPLAL1, ADAMTS9, LY86 and ITPR2-SSPN) substantially narrowed the signals to smaller sets of variants, some of which are in regions that have evidence of regulatory activity. By leveraging varying linkage disequilibrium structures across different populations, single-nucleotide polymorphisms (SNPs) with strong signals and narrower credible sets from trans-ethnic meta-analysis of central obesity provide more precise localizations of potential functional variants and suggest a possible regulatory role. Meta-analysis results for WHR were obtained from 77 167 EA participants from GIANT and 23 564 AA participants from the African Ancestry Anthropometry Genetics Consortium. For fine mapping we interrogated SNPs within ± 250 kb flanking regions of 14 previously reported index SNPs from loci discovered in EA populations by performing trans-ethnic meta-analysis of results from the EA and AA meta-analyses. We applied a Bayesian approach that leverages allelic heterogeneity across populations to combine meta-analysis results and aids in fine-mapping shared variants at these locations. We annotated variants using information from the ENCODE Consortium and Roadmap Epigenomics Project to prioritize variants for possible functionality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural selection is typically exerted at some specific life stages. If natural selection takes place before a trait can be measured, using conventional models can cause wrong inference about population parameters. When the missing data process relates to the trait of interest, a valid inference requires explicit modeling of the missing process. We propose a joint modeling approach, a shared parameter model, to account for nonrandom missing data. It consists of an animal model for the phenotypic data and a logistic model for the missing process, linked by the additive genetic effects. A Bayesian approach is taken and inference is made using integrated nested Laplace approximations. From a simulation study we find that wrongly assuming that missing data are missing at random can result in severely biased estimates of additive genetic variance. Using real data from a wild population of Swiss barn owls Tyto alba, our model indicates that the missing individuals would display large black spots; and we conclude that genes affecting this trait are already under selection before it is expressed. Our model is a tool to correctly estimate the magnitude of both natural selection and additive genetic variance.