Missing value imputation in longitudinal measures of alcohol consumption


Autoria(s): Grittner, U.; Gmel, G.; Ripatti, S.; Bloomfield, K.; Wicki, M.
Data(s)

2011

Resumo

Attrition in longitudinal studies can lead to biased results. The study is motivated by the unexpected observation that alcohol consumption decreased despite increased availability, which may be due to sample attrition of heavy drinkers. Several imputation methods have been proposed, but rarely compared in longitudinal studies of alcohol consumption. The imputation of consumption level measurements is computationally particularly challenging due to alcohol consumption being a semi-continuous variable (dichotomous drinking status and continuous volume among drinkers), and the non-normality of data in the continuous part. Data come from a longitudinal study in Denmark with four waves (2003-2006) and 1771 individuals at baseline. Five techniques for missing data are compared: Last value carried forward (LVCF) was used as a single, and Hotdeck, Heckman modelling, multivariate imputation by chained equations (MICE), and a Bayesian approach as multiple imputation methods. Predictive mean matching was used to account for non-normality, where instead of imputing regression estimates, "real" observed values from similar cases are imputed. Methods were also compared by means of a simulated dataset. The simulation showed that the Bayesian approach yielded the most unbiased estimates for imputation. The finding of no increase in consumption levels despite a higher availability remained unaltered. Copyright (C) 2011 John Wiley & Sons, Ltd.

Identificador

https://serval.unil.ch/notice/serval:BIB_2CFB6A0749D5

info:pmid:21556290

https://serval.unil.ch/resource/serval:BIB_2CFB6A0749D5.P002/REF

http://nbn-resolving.org/urn/resolver.pl?urn=urn:nbn:ch:serval-BIB_2CFB6A0749D59

urn:nbn:ch:serval-BIB_2CFB6A0749D59

Idioma(s)

eng

Fonte

International Journal of Methods in Psychiatric Research20150-61

Palavras-Chave #panel surveys; missing data; multiple imputation; Bayesian models; alcohol consumption; MULTIPLE IMPUTATION; HOT-DECK; SPECIFICATION; STABILITY; ATTRITION; SELECTION; DISCRETE; DRINKING; OUTCOMES; MODEL
Tipo

info:eu-repo/semantics/article

article

Formato

application/pdf

Direitos

info:eu-repo/semantics/openAccess

Copying allowed only for non-profit organizations

https://serval.unil.ch/disclaimer