991 resultados para ALPHA-FE2O3 NANOPARTICLES
Resumo:
CdS nanoparticies were prepared in air and their stability by air annealing was studied. A small change in crystal structure and particle size was observed by air annealing, but a rapid reduction in fluorescence was found. Through investigation, it is revealed that it is the surface change or reconstruction rather than the variation of the size or structure that decreases the fluorescence. The emission of the particles consists with two peaks which are dependent on the excitation energy. The two peaks are considered to be arisen from "two" different sizes of nanoparticles and may be explained in terms of selectively excited photoluminescence. Finally we discuss why the discrete state of nanoparticles are able to be resolved in the photoluminescence excitation spectrum, but could not be differentiated in the absorption spectrum.
Resumo:
The low frequency (<13 MHz) dielectric response and its light-induced change in undoped a-Si:H were investigated in detail. The dielectric constant epsilon (the real part) in this range decreases with illumination time: following a stretched exponential law similar to that found for other light-induced changes. The saturation relative change was about 0.1-0.2 % for the measured samples. The change is fading away either after repeated illumination-annealing training or by aging at room temperature. The present results indicate some rearrangement of the whole Si network caused by light soaking.
Resumo:
ZnO nanoparticles were synthesized in ethanolic solution using a sol-gel method. The structural and optical properties were investigated by X-ray diffraction, transmission electron microscopy, UV absorption, and photoluminescence. After annealing at 200 degrees C, the particle size is increased and the peak of defect luminescence in the visible region is changed. A yellow emission was observed in the as-prepared sample and a green emission in the annealed sample. The change of the visible emission is related to oxygen defects. Annealing in the absence of oxygen would increase oxygen vacancies. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
PL properties of Er3+ doped SiOx films containing Si nanoparticles have been studied. Er3+ emission intensity does not depend strongly upon crystallinity of Si clusters. The films can yield efficient Er3+ emission.
Resumo:
FePt nanoparticles with average size of 9 nm were synthesized using a diblock polymer micellar method combined with plasma treatment. To prevent from oxidation under ambient conditions, immediately after plasma treatment, the FePt nanoparticle arrays were in situ transferred into the film-growth chamber where they were covered by an SiO2 overlayer. A nearly complete transformation of L1(0) FePt was achieved for samples annealed at temperatures above 700 A degrees C. The well control on the FePt stoichiometry and avoidance from surface oxidation largely enhanced the coercivity, and a value as high as 10 kOe was obtained in this study. An evaluation of magnetic interactions was made using the so-called isothermal remanence (IRM) and dc-demagnetization (DCD) remanence curves and Kelly-Henkel plots (Delta M measurement). The Delta M measurement reveals that the resultant FePt nanoparticles exhibit a rather weak interparticle dipolar coupling, and the absence of interparticle exchange interaction suggests no significant particle agglomeration occurred during the post-annealing. Additionally, a slight parallel magnetic anisotropy was also observed. The results indicate the micellar method has a high potential in preparing FePt nanoparticle arrays used for ultrahigh density recording media.
Resumo:
We reported the synthesis of CdS semiconductor nanoparticles using a simple one-pot reaction by thermolysis of cadmium acetylacetonate in dodecanethiol. Optical measurements of the as-obtained CdS nanoparticles revealed that their optical properties were closely related to surface effects. Based upon the cocktail of poly (N-vinylcarbazole) (PVK) and CdS nanoparticles, a bistable device was fabricated by a simple solution processing technique. Such a device exhibited a remarkable electrical bistability, which was attributed to the electric field-assisted charge transfer between PVK and the CdS nanoparticles capped by dodecaethiol. The conduction mechanism changed from an injection-controlled current to a bulk-controlled one during switching from OFF-state to ON-state.
Resumo:
文章介绍了基于OSEK标准实现的嵌入式实时操作系统-AlphaOSEK。该操作系统适于深嵌入、小内存、有强实时需求的环境。介绍了操作系统的各组成模块及相关特征,还分析了AlphaOSEK对OSEK标准的优化。
Resumo:
Alpha olefins are mainly produced from paraffin cracking in China, but their quality is not good because of bad quality of cracking feed and outdated technology. The technology of paraffin once-through cracking, paraffin recycle cracking of removing the heavy fraction after wax vaporizing and that of removing the heavy fraction before wax vaporizing were investigated in this paper. It was found that the technology of paraffin recycle cracking of removing the heavy fraction before wax vaporizing is new and better under the same operating conditions. Using hard paraffin (mp 54-56 degrees C) as feed, the high-quality alpha olefins products (C-5-C-21) containing more than 97 wt% of olefins and more than 88 wt% of alpha olefins are produced under optimum process conditions, which are a steam to paraffin ratio of 15 wt%, process temperature of 600 degrees C, low hydrocarbon partial pressure and residence time of 2 s. In addition, with the technology of the second injecting steam in ethylene cracking used in paraffin cracking, producing coke in paraffin cracking furnace has been markedly reduced.
Resumo:
Plasmon resonance spectra of supported Ag nanoparticles are studied by depositing the particles on different substrates. It was found that the dielectric properties of the substrates have significant effects on the spectral line shape, except the resonance frequency. Beyond the plasmon resonance band, the spectral shape is mainly governed by the dielectric function, particularly its imaginary part, of the substrate. The plasmon resonance band, on the other hand, may be severely distorted if the substrate is absorbing strongly.
Resumo:
A liquid laser medium with a lifetime of 492 mu s and a fluorescent quantum efficiency of 52.5% has been presented by stably dispersing dimethyl dichorosilane-modified Nd2O3 nanoparticles in dimethylsulfoxide. Its optical properties and mechanism were investigated and explained by fluorescence resonance energy transfer theory. The calculation result shows that the quenching of Nd-III F-4(3/2)-> I-4(11/2) transition via O-H vibrational excitation can be eventually neglected. The main reason is that the silane-coupling agent molecules remove the -OH groups on Nd2O3 nanoparticles and form a protective out layer. (c) 2007 American Institute of Physics.
Resumo:
The strong absorption of gold nanoparticles in the visible spectral range allows the localized generation of heat in a volume of only a few tens of nanometer. The efficient conversion of strongly absorbed light by plasmonic gold nanoparticles to heat energy and their easy bioconjugation suggest that the gold nanoparticles can be used as selective photothermal agents in molecular cell targeting. The selective destruction of alkaline phosphatase, the permeabilization of the cell membrane and the selective killing of cells by laser irradiating gold nanoparticles were demonstrated. The potential of using this selective technique in molecularly targeted photothermal therapy and transfection is discussed.
Resumo:
The characteristics of K alpha X-ray sources generated by p-polarized femtosecond laser-solid interactions are experimentally studied in the relativistic regime. By use of knife-edge image technique and a single-photon-counting X-ray CCD camera, we obtaine the source size, the spectrum and the conversion efficiency of the Ka X-ray sources. The experimental results show that the conversion efficiency of Ka photons reaches an optimum value of 7.08 x 10(-6)/sr at the laser intensity of 1.6 x 10(18) W/cm(2), which is different from the Reich's simulation results (Reich et al., 2000 Phys. Rev. Lett. 84 4846). We find that about 10% of laser energy is converted into the forward hot electrons at the laser intensity of 1.6 x 10(18) W/cm(2).