957 resultados para 090604 Microelectronics and Integrated Circuits
Resumo:
This paper aims to conceptualise trafficking in human beings (THB) as an organised crime by drawing on the rational choice theory. Utilising crime scripting principles, it proposes trafficking schematics to capture and visualise THB in its entirety. Stemming from its transnational nature and varying conceptualisations, combatting THB faces challenges, such as the lack of harmonisation of policy instruments and differing stakeholder agendas. To mitigate these challenges, this paper proposes trafficking schematics. Their core lies in the modelling of THB constituent elements, including stages and their sequence, key actors and relationships, and financial modus operandi. Trafficking schematics may therefore contribute to addressing THB in a holistic, dynamic and integrated way, by enriching stakeholders’ understanding of the phenomenon and facilitating collaboration to address it. The paper contributes to theory and practice by drawing up a model of the procedural, human, logistical and environmental elements of THB that may be viewed as an instrument of public value creation.
Resumo:
In modern society, the body health is a very important issue to everyone. With the development of the science and technology, the new and developed body health monitoring device and technology will play the key role in the daily medical activities. This paper focus on making progress in the design of the wearable vital sign system. A vital sign monitoring system has been proposed and designed. The whole detection system is composed of signal collecting subsystem, signal processing subsystem, short-range wireless communication subsystem and user interface subsystem. The signal collecting subsystem is composed of light source and photo diode, after emiting light of two different wavelength, the photo diode collects the light signal reflected by human body tissue. The signal processing subsystem is based on the analog front end AFE4490 and peripheral circuits, the collected analog signal would be filtered and converted into digital signal in this stage. After a series of processing, the signal would be transmitted to the short-range wireless communication subsystem through SPI, this subsystem is mainly based on Bluetooth 4.0 protocol and ultra-low power System on Chip(SoC) nRF51822. Finally, the signal would be transmitted to the user end. After proposing and building the system, this paper focus on the research of the key component in the system, that is, the photo detector. Based on the study of the perovskite materials, a low temperature processed photo detector has been proposed, designed and researched. The device is made up of light absorbing layer, electron transporting and hole blocking layer, hole transporting and electron blocking layer, conductive substrate layer and metal electrode layer. The light absorbing layer is the important part of whole device, and it is fabricated by perovskite materials. After accepting the light, the electron-hole pair would be produced in this layer, and due to the energy level difference, the electron and hole produced would be transmitted to metal electrode and conductive substrate electrode through electron transporting layer and hole transporting layer respectively. In this way the response current would be produced. Based on this structure, the specific fabrication procedure including substrate cleaning; PEDOT:PSS layer preparation; pervoskite layer preparation; PCBM layer preparation; C60, BCP, and Ag electrode layer preparation. After the device fabrication, a series of morphological characterization and performance testing has been done. The testing procedure including film-forming quality inspection, response current and light wavelength analysis, linearity and response time and other optical and electrical properties testing. The testing result shows that the membrane has been fabricated uniformly; the device can produce obvious response current to the incident light with the wavelength from 350nm to 800nm, and the response current could be changed along with the light wavelength. When the light wavelength keeps constant, there exists a good linear relationship between the intensity of the response current and the power of the incident light, based on which the device could be used as the photo detector to collect the light information. During the changing period of the light signal, the response time of the device is several microseconds, which is acceptable working as a photo detector in our system. The testing results show that the device has good electronic and optical properties, and the fabrication procedure is also repeatable, the properties of the devices has good uniformity, which illustrates the fabrication method and procedure could be used to build the photo detector in our wearable system. Based on a series of testing results, the paper has drawn the conclusion that the photo detector fabricated could be integrated on the flexible substrate and is also suitable for the monitoring system proposed, thus made some progress on the research of the wearable monitoring system and device. Finally, some future prospect in system design aspect and device design and fabrication aspect are proposed.
Resumo:
Ce travail présente une modélisation rapide d’ordre élévé capable de modéliser une configuration rotorique en cage complète ou en grille, de reproduire les courants de barre et tenir compte des harmoniques d’espace. Le modèle utilise une approche combinée d’éléments finis avec les circuits-couplés. En effet, le calcul des inductances est réalisé avec les éléments finis, ce qui confère une précision avancée au modèle. Cette méthode offre un gain important en temps de calcul sur les éléments finis pour des simulations transitoires. Deux outils de simulation sont développés, un dans le domaine du temps pour des résolutions dynamiques et un autre dans le domaine des phaseurs dont une application sur des tests de réponse en fréquence à l’arrêt (SSFR) est également présentée. La méthode de construction du modèle est décrite en détail de même que la procédure de modélisation de la cage du rotor. Le modèle est validé par l’étude de machines synchrones: une machine de laboratoire de 5.4 KVA et un grand alternateur de 109 MVA dont les mesures expérimentales sont comparées aux résultats de simulation du modèle pour des essais tels que des tests à vide, des courts-circuits triphasés, biphasés et un test en charge.
Resumo:
The thesis presents experimental results, simulations, and theory on turbulence excited in magnetized plasmas near the ionosphere’s upper hybrid layer. The results include: The first experimental observations of super small striations (SSS) excited by the High-Frequency Auroral Research Project (HAARP) The first detection of high-frequency (HF) waves from the HAARP transmitter over a distance of 16x10^3 km The first simulations indicating that upper hybrid (UH) turbulence excites electron Bernstein waves associated with all nearby gyroharmonics Simulation results that indicate that the resulting bulk electron heating near the upper hybrid (UH) resonance is caused primarily by electron Bernstein waves parametrically excited near the first gyroharmonic. On the experimental side we present two sets of experiments performed at the HAARP heating facility in Alaska. In the first set of experiments, we present the first detection of super-small (cm scale) striations (SSS) at the HAARP facility. We detected density structures smaller than 30 cm for the first time through a combination of satellite and ground based measurements. In the second set of experiments, we present the results of a novel diagnostic implemented by the Ukrainian Antarctic Station (UAS) in Verdansky. The technique allowed the detection of the HAARP signal at a distance of nearly 16 Mm, and established that the HAARP signal was injected into the ionospheric waveguide by direct scattering off of dekameter-scale density structures induced by the heater. On the theoretical side, we present results of Vlasov simulations near the upper hybrid layer. These results are consistent with the bulk heating required by previous work on the theory of the formation of descending artificial ionospheric layers (DIALs), and with the new observations of DIALs at HAARP’s upgraded effective radiated power (ERP). The simulations that frequency sweeps, and demonstrate that the heating changes from a bulk heating between gyroharmonics, to a tail acceleration as the pump frequency is swept through the fourth gyroharmonic. These simulations are in good agreement with experiments. We also incorporate test particle simulations that isolate the effects of specific wave modes on heating, and we find important contributions from both electron Bernstein waves and upper hybrid waves, the former of which have not yet been detected by experiments, and have not been previously explored as a driver of heating. In presenting these results, we analyzed data from HAARP diagnostics and assisted in planning the second round of experiments. We integrated the data into a picture of experiments that demonstrated the detection of SSS, hysteresis effects in simulated electromagnetic emission (SEE) features, and the direct scattering of the HF pump into the ionospheric waveguide. We performed simulations and analyzed simulation data to build the understanding of collisionless heating near the upper hybrid layer, and we used these simulations to show that bulk electron heating at the upper hybrid layer is possible, which is required by current theories of DAIL formation. We wrote a test particle simulation to isolate the effects of electron Bernstein waves and upper hybrid layers on collisionless heating, and integrated this code to work with both the output of Vlasov simulations and the input for simulations of DAIL formation.
Resumo:
This thesis is devoted to the development, synthesis, properties, and applications of nano materials for critical technologies, including three areas: (1) Microbial contamination of drinking water is a serious problem of global significance. About 51% of the waterborne disease outbreaks in the United States can be attributed to contaminated ground water. Development of metal oxide nanoparticles, as viricidal materials is of technological and fundamental scientific importance. Nanoparticles with high surface areas and ultra small particle sizes have dramatically enhanced efficiency and capacity of virus inactivation, which cannot be achieved by their bulk counterparts. A series of metal oxide nanoparticles, such as iron oxide nanoparticles, zinc oxide nanoparticles and iron oxide-silver nanoparticles, coated on fiber substrates was developed in this research for evaluation of their viricidal activity. We also carried out XRD, TEM, SEM, XPS, surface area measurements, and zeta potential of these nanoparticles. MS2 virus inactivation experiments showed that these metal oxide nanoparticle coated fibers were extremely powerful viricidal materials. Results from this research suggest that zinc oxide nanoparticles with diameter of 3.5 nm, showing an isoelectric point (IEP) at 9.0, were well dispersed on fiberglass. These fibers offer an increase in capacity by orders of magnitude over all other materials. Compared to iron oxide nanoparticles, zinc oxide nanoparticles didn’t show an improvement in inactivation kinetics but inactivation capacities did increase by two orders of magnitude to 99.99%. Furthermore, zinc oxide nanoparticles have higher affinity to viruses than the iron oxide nanoparticles in presence of competing ions. The advantages of zinc oxide depend on high surface charge density, small nanoparticle sizes and capabilities of generating reactive oxygen species. The research at its present stage of development appears to offer the best avenue to remove viruses from water. Without additional chemicals and energy input, this system can be implemented by both points of use (POU) and large-scale use water treatment technology, which will have a significant impact on the water purification industry. (2) A new family of aliphatic polyester lubricants has been developed for use in micro-electromechanical systems (MEMS), specifically for hard disk drives that operate at high spindle speeds (>15000rpm). Our program was initiated to address current problems with spin-off of the perfluoroether (PFPE) lubricants. The new polyester lubricant appears to alleviate spin-off problems and at the same time improves the chemical and thermal stability. This new system provides a low cost alternative to PFPE along with improved adhesion to the substrates. In addition, it displays a much lower viscosity, which may be of importance to stiction related problems. The synthetic route is readily scalable in case additional interest emerges in other areas including small motors. (3) The demand for increased signal transmission speed and device density for the next generation of multilevel integrated circuits has placed stringent demands on materials performance. Currently, integration of the ultra low-k materials in dual Damascene processing requires chemical mechanical polishing (CMP) to planarize the copper. Unfortunately, none of the commercially proposed dielectric candidates display the desired mechanical and thermal properties for successful CMP. A new polydiacetylene thermosetting polymer (DEB-TEB), which displays a low dielectric constant (low-k) of 2.7, was recently developed. This novel material appears to offer the only avenue for designing an ultra low k dielectric (1.85k), which can still display the desired modulus (7.7Gpa) and hardness (2.0Gpa) sufficient to withstand the process of CMP. We focused on further characterization of the thermal properties of spin-on poly (DEB-TEB) ultra-thin film. These include the coefficient of thermal expansion (CTE), biaxial thermal stress, and thermal conductivity. Thus the CTE is 2.0*10-5K-1 in the perpendicular direction and 8.0*10-6 K-1 in the planar direction. The low CTE provides a better match to the Si substrate which minimizes interfacial stress and greatly enhances the reliability of the microprocessors. Initial experiments with oxygen plasma etching suggest a high probability of success for achieving vertical profiles.
Resumo:
International audience
Resumo:
International audience
Resumo:
International audience
Resumo:
International audience
Resumo:
The recently discovered abilities to synthesize single-walled carbon nanotubes and prepare single layer graphene have spurred interest in these sp2-bonded carbon nanostructures. In particular, studies of their potential use in electronic devices are many as silicon integrated circuits are encountering processing limitations, quantum effects, and thermal management issues due to rapid device scaling. Nanotube and graphene implementation in devices does come with significant hurdles itself. Among these issues are the ability to dope these materials and understanding what influences defects have on expected properties. Because these nanostructures are entirely all-surface, with every atom exposed to ambient, introduction of defects and doping by chemical means is expected to be an effective route for addressing these issues. Raman spectroscopy has been a proven characterization method for understanding vibrational and even electronic structure of graphene, nanotubes, and graphite, especially when combined with electrical measurements, due to a wealth of information contained in each spectrum. In Chapter 1, a discussion of the electronic structure of graphene is presented. This outlines the foundation for all sp2-bonded carbon electronic properties and is easily extended to carbon nanotubes. Motivation for why these materials are of interest is readily gained. Chapter 2 presents various synthesis/preparation methods for both nanotubes and graphene, discusses fabrication techniques for making devices, and describes characterization methods such as electrical measurements as well as static and time-resolved Raman spectroscopy. Chapter 3 outlines changes in the Raman spectra of individual metallic single-walled carbon nantoubes (SWNTs) upon sidewall covalent bond formation. It is observed that the initial degree of disorder has a strong influence on covalent sidewall functionalization which has implications on developing electronically selective covalent chemistries and assessing their selectivity in separating metallic and semiconducting SWNTs. Chapter 4 describes how optical phonon population extinction lifetime is affected by covalent functionalization and doping and includes discussions on static Raman linewidths. Increasing defect concentration is shown to decrease G-band phonon population lifetime and increase G-band linewidth. Doping only increases G-band linewidth, leaving non-equilibrium population decay rate unaffected. Phonon mediated electron scattering is especially strong in nanotubes making optical phonon decay of interest for device applications. Optical phonon decay also has implications on device thermal management. Chapter 5 treats doping of graphene showing ambient air can lead to inadvertent Fermi level shifts which exemplifies the sensitivity that sp2-bonded carbon nanostructures have to chemical doping through sidewall adsorption. Removal of this doping allows for an investigation of electron-phonon coupling dependence on temperature, also of interest for devices operating above room temperature. Finally, in Chapter 6, utilizing the information obtained in previous chapters, single carbon nanotube diodes are fabricated and characterized. Electrical performance shows these diodes are nearly ideal and photovoltaic response yields 1.4 nA and 205 mV of short circuit current and open circuit voltage from a single nanotube device. A summary and discussion of future directions in Chapter 7 concludes my work.
Resumo:
The social landscape is filled with an intricate web of species-specific desired objects and course of actions. Humans are highly social animals and, as they navigate this landscape, they need to produce adapted decision-making behaviour. Traditionally social and non-social neural mechanisms affecting choice have been investigated using different approaches. Recently, in an effort to unite these findings, two main theories have been proposed to explain how the brain might encode social and non-social motivational decision-making: the extended common currency and the social valuation specific schema (Ruff & Fehr 2014). One way to test these theories is to directly compare neural activity related to social and non-social decision outcomes within the same experimental setting. Here we address this issue by focusing on the neural substrates of social and non-social forms of uncertainty. Using functional magnetic resonance imaging (fMRI) we directly compared the neural representations of reward and risk prediction and errors (RePE and RiPE) in social and non- social situations using gambling games. We used a trust betting game to vary uncertainty along a social dimension (trustworthiness), and a card game (Preuschoff et al. 2006) to vary uncertainty along a non-social dimension (pure risk). The trust game was designed to maintain the same structure of the card game. In a first study, we exposed a divide between subcortical and cortical regions when comparing the way these regions process social and non-social forms of uncertainty during outcome anticipation. Activity in subcortical regions reflected social and non-social RePE, while activity in cortical regions correlated with social RePE and non-social RiPE. The second study focused on outcome delivery and integrated the concept of RiPE in non-social settings with that of fairness and monetary utility maximisation in social settings. In particular these results corroborate recent models of anterior insula function (Singer et al. 2009; Seth 2013), and expose a possible neural mechanism that weights fairness and uncertainty but not monetary utility. The third study focused on functionally defined regions of the early visual cortex (V1) showing how activity in these areas, traditionally considered only visual, might reflect motivational prediction errors in addition to known perceptual prediction mechanisms (den Ouden et al 2012). On the whole, while our results do not support unilaterally one or the other theory modeling the underlying neural dynamics of social and non-social forms of decision making, they provide a working framework where both general mechanisms might coexist.
Resumo:
A series of related research studies over 15 years assessed the effects of prawn trawling on sessile megabenthos in the Great Barrier Reef, to support management for sustainable use in the World Heritage Area. These large-scale studies estimated impacts on benthos (particularly removal rates per trawl pass), monitored subsequent recovery rates, measured natural dynamics of tagged megabenthos, mapped the regional distribution of seabed habitats and benthic species, and integrated these results in a dynamic modelling framework together with spatio-temporal fishery effort data and simulated management. Typical impact rates were between 5 and 25% per trawl, recovery times ranged from several years to several decades, and most sessile megabenthos were naturally distributed in areas where little or no trawling occurred and so had low exposure to trawling. The model simulated trawl impact and recovery on the mapped species distributions, and estimated the regional scale cumulative changes due to trawling as a time series of status for megabenthos species. The regional status of these taxa at time of greatest depletion ranged from ∼77% relative to pre-trawl abundance for the worst case species, having slow recovery with moderate exposure to trawling, to ∼97% for the least affected taxon. The model also evaluated the expected outcomes for sessile megabenthos in response to major management interventions implemented between 1999 and 2006, including closures, effort reductions, and protected areas. As a result of these interventions, all taxa were predicted to recover (by 2-14% at 2025); the most affected species having relatively greater recovery. Effort reductions made the biggest positive contributions to benthos status for all taxa, with closures making smaller contributions for some taxa. The results demonstrated that management actions have arrested and reversed previous unsustainable trends for all taxa assessed, and have led to a prawn trawl fishery with improved environmental sustainability. © 2015 International Council for the Exploration of the Sea 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Resumo:
The performance, energy efficiency and cost improvements due to traditional technology scaling have begun to slow down and present diminishing returns. Underlying reasons for this trend include fundamental physical limits of transistor scaling, the growing significance of quantum effects as transistors shrink, and a growing mismatch between transistors and interconnects regarding size, speed and power. Continued Moore's Law scaling will not come from technology scaling alone, and must involve improvements to design tools and development of new disruptive technologies such as 3D integration. 3D integration presents potential improvements to interconnect power and delay by translating the routing problem into a third dimension, and facilitates transistor density scaling independent of technology node. Furthermore, 3D IC technology opens up a new architectural design space of heterogeneously-integrated high-bandwidth CPUs. Vertical integration promises to provide the CPU architectures of the future by integrating high performance processors with on-chip high-bandwidth memory systems and highly connected network-on-chip structures. Such techniques can overcome the well-known CPU performance bottlenecks referred to as memory and communication wall. However the promising improvements to performance and energy efficiency offered by 3D CPUs does not come without cost, both in the financial investments to develop the technology, and the increased complexity of design. Two main limitations to 3D IC technology have been heat removal and TSV reliability. Transistor stacking creates increases in power density, current density and thermal resistance in air cooled packages. Furthermore the technology introduces vertical through silicon vias (TSVs) that create new points of failure in the chip and require development of new BEOL technologies. Although these issues can be controlled to some extent using thermal-reliability aware physical and architectural 3D design techniques, high performance embedded cooling schemes, such as micro-fluidic (MF) cooling, are fundamentally necessary to unlock the true potential of 3D ICs. A new paradigm is being put forth which integrates the computational, electrical, physical, thermal and reliability views of a system. The unification of these diverse aspects of integrated circuits is called Co-Design. Independent design and optimization of each aspect leads to sub-optimal designs due to a lack of understanding of cross-domain interactions and their impacts on the feasibility region of the architectural design space. Co-Design enables optimization across layers with a multi-domain view and thus unlocks new high-performance and energy efficient configurations. Although the co-design paradigm is becoming increasingly necessary in all fields of IC design, it is even more critical in 3D ICs where, as we show, the inter-layer coupling and higher degree of connectivity between components exacerbates the interdependence between architectural parameters, physical design parameters and the multitude of metrics of interest to the designer (i.e. power, performance, temperature and reliability). In this dissertation we present a framework for multi-domain co-simulation and co-optimization of 3D CPU architectures with both air and MF cooling solutions. Finally we propose an approach for design space exploration and modeling within the new Co-Design paradigm, and discuss the possible avenues for improvement of this work in the future.
Resumo:
This document is summarizing a major part of the work performed by the FP7-JERICO consortium, including 27 partner institutions, during 4 years (2011-2015). Its objective is to propose a strategy for the European coastal observation and monitoring. To do so we give an overview of the main achievements of the FP7-JERICO project. From this overview, gaps are analysed to draw some recommendations for the future. Overview, gaps and recommendation are addressed at both Hardware and Software levels of the JERICO Research Infrastructure. The main part of the document is built upon this analysis to outcome a general strategy for the future, giving priorities to be targeted and some possible funding mechanisms, but also upon discussions held in dedicated JERICO strategy workshops. This document was initiated in 2014 by the coordination team but considering the fact that an overview of the entire project and its achievement were needed to feed this strategy deliverable it couldn’t ended before the end of FP7-JERICO, April 2015. The preparation of the JERICO-NEXT proposal in summer 2014 to answer an H2020 call for proposals pushed the consortium ahead, fed deep thoughts about this strategy but the intention was to not propose a strategy only bounded by the JERICO-NEXT answer. Authors are conscious that writing JERICO-NEXT is even drawing a bias in the thoughts and they tried to be opened. Nevertheless, comments are always welcome to go farther ahead. Structure of the document The Chapter 3 introduces the need of sustained coastal observatories, from different point of view including a short description of the FP7-JERICO project. In Chapter 4, an analysis of the JERICO coastal observatory Hardware (platforms and sensors) in terms of Status at the end of JERICO, identified gaps and recommendations for further development is provided region by region. The main challenges that remain to be overcome is also summarized. Chapter 5 is dedicated the JERICO infrastructure Software (calibration, operation, quality assessment, data management) and the progress made through JERICO on harmonization of procedures and definition of best practices. Chapter 6 provides elements of a strategy towards sustainable and integrated coastal observations for Europe, drawing a roadmap for cost-effective scientific-based consolidation of the present infrastructure while maximizing the potential arising from JERICO in terms of innovation, wealth-creation, and business development. After reading the chapter 3, for who doesn’t know JERICO, any chapter can be read independently. More details are available in the JERICO final reports and its intermediate reports; all are available on the JERICO web site (www.jerico-FP7.eu) as well as any deliverable. Each chapter will list referring JERICO documents. A small bibliographic list is available at the end of this deliverable.
Resumo:
Aim:To describe the clinical, demographic and environmental features associated with NSCL/P (nonsyndromic cleft lip and/or palate) patients born in western Parana state, Brazil. Methods: This cross-sectional, observational, retrospective study included 188 patients attended at the Association of Carriers of Cleft Lip and Palate - APOFILAB, Cascavel-Parana, between 2012 and 2014. Information on demographic characteristics, medical and dental histories and life style factors were obtained from records and personal interviews. Results: Among the 188 patients, cleft lip and palate (CLP) was the most frequent subtype (55.8%), followed by cleft lip only (CLO, 25.0%) and cleft palate only (CPO, 19.2%). Caucasian males were the most affected, although no differences among types of cleft were observed. The otorhinolaryngologic and respiratory alterations were the most frequent systemic alterations in NSCL/P patients, and more than 80% of the NSCL/P mothers reported no vitamin supplements during the first trimester of pregnancy. Conclusions: This study revealed that the prevalence of nonsyndromic oral cleft types in this cohort was quite similar to previously reported prevalence rates. Systemic alterations were identified among 23.4% of the patients and patients with CLP were the most affected. History of maternal exposition to environmental factors related to nonsyndromic oral clefts was frequent and most mothers reported no vitamin supplements during the pregnancy. This study highlights the importance of identifying systemic alterations and risk factors associated with NSCL/P in the Brazilian population for planning comprehensive strategies and integrated actions for the development of preventive programs and treatment.