923 resultados para route


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dimeric phenolic compounds lignans and dilignols form in the so-called oxidative coupling reaction of phenols. Enzymes such as peroxidases and lac-cases catalyze the reaction using hydrogen peroxide or oxygen respectively as oxidant generating phenoxy radicals which couple together according to certain rules. In this thesis, the effects of the structures of starting materials mono-lignols and the effects of reaction conditions such as pH and solvent system on this coupling mechanism and on its regio- and stereoselectivity have been studied. After the primary coupling of two phenoxy radicals a very reactive quinone me-thide intermediate is formed. This intermediate reacts quickly with a suitable nucleophile which can be, for example, an intramolecular hydroxyl group or another nucleophile such as water, methanol, or a phenolic compound in the reaction system. This reaction is catalyzed by acids. After the nucleophilic addi-tion to the quinone methide, other hydrolytic reactions, rearrangements, and elimination reactions occur leading finally to stable dimeric structures called lignans or dilignols. Similar reactions occur also in the so-called lignification process when monolignol (or dilignol) reacts with the growing lignin polymer. New kinds of structures have been observed in this thesis. The dimeric com-pounds with so-called spirodienone structure have been observed to form both in the dehydrodimerization of methyl sinapate and in the beta-1-type cross-coupling reaction of two different monolignols. This beta-1-type dilignol with a spirodienone structure was the first synthetized and published dilignol model compound, and at present, it has been observed to exist as a fundamental construction unit in lignins. The enantioselectivity of the oxidative coupling reaction was also studied for obtaining enantiopure lignans and dilignols. A rather good enantioselectivity was obtained in the oxidative coupling reaction of two monolignols with chiral auxiliary substituents using peroxidase/H2O2 as an oxidation system. This observation was published as one of the first enantioselective oxidative coupling reaction of phenols. Pure enantiomers of lignans were also obtained by using chiral cryogenic chromatography as a chiral resolution technique. This technique was shown to be an alternative route to prepare enantiopure lignans or lignin model compounds in a preparative scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Breast cancer is the most common cancer in women in the western countries. Approximately two-thirds of breast cancer tumours are hormone dependent, requiring estrogens to grow. Estrogens are formed in the human body via a multistep route starting from cholesterol. The final steps in the biosynthesis include the CYP450 aromatase enzyme, converting the male hormones androgens (preferred substrate androstenedione ASD) into estrogens(estrone E1), and the 17beta-HSD1 enzyme, converting the biologically less active E1 into the active hormone 17beta-hydroxyestradiol E2. E2 is bound to the nuclear estrogen receptors causing a cascade of biochemical reactions leading to cell proliferation in normal tissue, and to tumour growth in cancer tissue. Aromatase and 17beta-HSD1 are expressed in or near the breast tumour, locally providing the tissue with estrogens. One approach in treating hormone dependent breast tumours is to block the local estrogen production by inhibiting these two enzymes. Aromatase inhibitors are already on the market in treating breast cancer, despite the lack of an experimentally solved structure. The structure of 17beta-HSD1, on the other hand, has been solved, but no commercial drugs have emerged from the drug discovery projects reported in the literature. Computer-assisted molecular modelling is an invaluable tool in modern drug design projects. Modelling techniques can be used to generate a model of the target protein and to design novel inhibitors for them even if the target protein structure is unknown. Molecular modelling has applications in predicting the activities of theoretical inhibitors and in finding possible active inhibitors from a compound database. Inhibitor binding at atomic level can also be studied with molecular modelling. To clarify the interactions between the aromatase enzyme and its substrate and inhibitors, we generated a homology model based on a mammalian CYP450 enzyme, rabbit progesterone 21-hydroxylase CYP2C5. The model was carefully validated using molecular dynamics simulations (MDS) with and without the natural substrate ASD. Binding orientation of the inhibitors was based on the hypothesis that the inhibitors coordinate to the heme iron, and were studied using MDS. The inhibitors were dietary phytoestrogens, which have been shown to reduce the risk for breast cancer. To further validate the model, the interactions of a commercial breast cancer drug were studied with MDS and ligand–protein docking. In the case of 17beta-HSD1, a 3D QSAR model was generated on the basis of MDS of an enzyme complex with active inhibitor and ligand–protein docking, employing a compound library synthesised in our laboratory. Furthermore, four pharmacophore hypotheses with and without a bound substrate or an inhibitor were developed and used in screening a commercial database of drug-like compounds. The homology model of aromatase showed stable behaviour in MDS and was capable of explaining most of the results from mutagenesis studies. We were able to identify the active site residues contributing to the inhibitor binding, and explain differences in coordination geometry corresponding to the inhibitory activity. Interactions between the inhibitors and aromatase were in agreement with the mutagenesis studies reported for aromatase. Simulations of 17beta-HSD1 with inhibitors revealed an inhibitor binding mode with hydrogen bond interactions previously not reported, and a hydrophobic pocket capable of accommodating a bulky side chain. Pharmacophore hypothesis generation, followed by virtual screening, was able to identify several compounds that can be used in lead compound generation. The visualisation of the interaction fields from the QSAR model and the pharmacophores provided us with novel ideas for inhibitor development in our drug discovery project.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal rearrangement of diethylamino 5-(m-methoxyphenoxy)-pent-2-yne (3) gives 1-(m-methexyphenoxy)-pent-3,4-diene (14) in about 8% yield. Hydration of the latter yields 1-(m-methoxyphenoxy)-pentan-4-one (6), which has been synthesised by an unambiguous route. A mechanism of formation of the allene (14) from the amine (3) has been suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The usual assumption made in time minimising transportation problem is that the time for transporting a positive amount in a route is independent of the actual amount transported in that route. In this paper we make a more general and natural assumption that the time depends on the actual amount transported. We assume that the time function for each route is an increasing piecewise constant function. Four algorithms - (1) a threshold algorithm, (2) an upper bounding technique, (3) a primal dual approach, and (4) a branch and bound algorithm - are presented to solve the given problem. A method is also given to compute the minimum bottle-neck shipment corresponding to the optimal time. A numerical example is solved illustrating the algorithms presented in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present low-frequency electrical resistance fluctuations, or noise, in graphene-based field-effect devices with varying number of layers. In single-layer devices, the noise magnitude decreases with increasing carrier density, which behaved oppositely in the devices with two or larger number of layers accompanied by a suppression in noise magnitude by more than two orders in the latter case. This behavior can be explained from the influence of external electric field on graphene band structure, and provides a simple transport-based route to isolate single-layer graphene devices from those with multiple layers. ©2009 American Institute of Physics

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis of 4,4,N,N-tetramethyl-NN-dinitroso-2,2-methylenedianiline (1) by the route p-MeC6H4NH2+ HCHO + OH–(p-MeC6H4NMe)2CH2(7b); (7b)+ acid at 70 °C 4,N-dimethyl-6-(N-methyl-p-toluidinomethyl)aniline (4b); (4b)+ acid at 130 °C 4,4,NN-tetramethyl-2,2-methylenedianiline (3b); (3b)+ HNO2(1), is described. Aspects of the 1H n.m.r. spectra of the above and related compounds are discussed. A crystal-structure analysis of compound (1) shows one of the N-nitroso-groups to be disordered with the endo-form being in preponderance (4 : 1) over the exo-form. The other N-nitroso-group is exclusively exo in the solid state. There is little or no resonance between the benzene ring and the nitroso-group attached to the ring, the two groups being almost perpendicular to each other. In one of the N-nitroso-groups, the nitrogen atom deviates significantly from the plane of the benzene ring to which it is attached. Both amide nitrogen atoms show some pyramidal character.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Negative differential resistance (NDR) has been observed for the first time above room temperature in gallium nitride nanocrystals synthesized by a simple chemical route. Current-voltage characteristics have been used to investigate this effect through a metal-semiconductor-metal (M-S-M) configuration on SiO2. The NDR effect is reversible and reproducible through many cycles. The threshold voltage is similar to 7 V above room temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first glycyl radical in an enzyme was described 20 years ago and since then the family of glycyl radical enzymes (GREs) has expanded to include enzymes catalysing five chemically distinct reactions. The type enzymes of the family, anaerobic ribonucleotide reductase (RNRIII) and pyruvate formate lyase (PFL) had been studied long before it was known that they are GREs. Spectroscopic measurements on the radical and an observation that exposure to oxygen irreversibly inactivates the enzymes by cleavage of the protein proved that the radical is located on a particular glycine residue, close to the C-terminus of the protein. Both anaerobic RNRIII and PFL, are important for many anaerobic and facultative anaerobic bacteria as RNRIII is responsible for the synthesis of DNA precursors and PFL catalyses a key metabolic reaction in glycolysis. The crystal structures of both were solved in 1999 and they revealed that, although the enzymes do not share significant sequence identity, they share a similar structure - the radical site and residues necessary for catalysis are buried inside a ten stranded $\ualpha $/$\ubeta $-barrel. GREs are synthesised in an inactive form and are post-translationally activated by an activating enzyme which uses S-adenosyl methionine and an iron-sulphur cluster to generate the radical. One of the goals of this thesis work was to crystallise the activating enzyme of PFL. This task is challenging as, like GREs, the activating component is inactivated by oxygen. The experiments were therefore carried out in an oxygen free atmosphere. This is the first report of a crystalline GRE activating enzyme. Recently several new GREs have been characterised, all sharing sequence similarity to PFL but not to RNRIII. Also, the genome sequencing projects have identified many PFL-like GREs of unknown function, usually annotated as PFLs. In the present thesis I describe the grouping of these PFL family enzymes based on the sequence similarity and analyse the conservation patterns when compared to the structure of E. coli PFL. Based on this information an activation route is proposed. I also report a crystal structure of one of the PFL-like enzymes with unknown function, PFL2 from Archaeoglobus fulgidus. As A. fulgidus is a hyperthermophilic organism, possible mechanisms stabilising the structure are discussed. The organisation of an active site of PFL2 suggests that the enzyme may be a dehydratase. Keywords: glycyl radical, enzyme, pyruvate formate lyase, x-ray crystallography, bioinformatics

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ongoing climate change along with increasing levels of pollutants, diseases, habitat loss and fragmentation constitute global threats to the persistence of many populations, species and ecosystems. However, for the long-term persistence of local populations, one of the biggest threats is the intrinsic loss of genetic variation. In order to adapt to changes in the environment, organisms must have a sufficient supply of heritable variation in traits important for their fitness. With a loss of genetic variation, the risk of extinction will increase. For conservational practices, one should therefore understand the processes that shape the genetic population structure and also the broader (historical) phylogenetic patterning of the species in focus. In this thesis, microsatellite markers were applied to study genetic diversity and population differentiation of the protected moor frog (Rana arvalis) in Fennoscandia from both historical (evolutionary) and applied (conservation) perspectives. The results demonstrate that R. arvalis populations are highly structured over rather short geographic distances. Moreover, the results suggest that R. arvalis recolonized Fennoscandia from two directions after the last ice age. This has had implications for the genetic structuring and population differentiation, especially in the northernmost parts where the two lineages have met. Compared to more southern populations, the genetic variation decreases and the interpopulation differentiation increases dramatically towards north. This could be an outcome of serial population bottlenecking along the recolonization route. Also, current isolation and small population sizes increase the effect of drift, thus reinforcing the observed pattern. The same pattern can also be seen in island populations. However, though R. arvalis on the island of Gotland has lost most of its neutral genetic variability, our results indicate that the levels of additive genetic variation have remained high. This conforms to the conjecture that though neutral markers are widely used in conservation purposes, they may be quite uninformative about the levels of genetic variation in ecologically important traits. Finally, the evolutionary impact of the typical amphibian mating behaviour on genetic diversity was investigated. Given the short time available for larval development, it is important that mating takes place as early as possible. The genetic data and earlier capture-recapture data suggest that R. arvalis gather at mating grounds they are familiar with. However, by forming leks in random to relatedness, and having multiple paternities in single clutches, the risk of inbreeding may be minimized in this otherwise highly philopatric species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ultimate goal of this study has been to construct metabolically engineered microbial strains capable of fermenting glucose into pentitols D-arabitol and, especially, xylitol. The path that was chosen to achieve this goal required discovery, isolation and sequencing of at least two pentitol phosphate dehydrogenases of different specificity, followed by cloning and expression of their genes and characterization of recombinant arabitol and xylitol phosphate dehydrogenases. An enzyme of a previously unknown specificity, D-arabitol phosphate dehydrogenase (APDH), was discovered in Enterococcus avium. The enzyme was purified to homogenity from E. avium strain ATCC 33665. SDS/PAGE revealed that the enzyme has a molecular mass of 41 ± 2 kDa, whereas a molecular mass of 160 ± 5 kDa was observed under non-denaturing conditions implying that the APDH may exist as a tetramer with identical subunits. Purified APDH was found to have narrow substrate specificity, converting only D-arabitol 1-phosphate and D-arabitol 5-phosphate into D-xylulose 5-phosphate and D-ribulose 5-phosphate, respectively, in the oxidative reaction. Both NAD+ and NADP+ were accepted as co-factors. Based on the partial protein sequences, the gene encoding APDH was cloned. Homology comparisons place APDH within the medium chain dehydrogenase family. Unlike most members of this family, APDH requires Mn2+ but no Zn2+ for enzymatic activity. The DNA sequence surrounding the gene suggests that it belongs to an operon that also contains several components of phosphotransferase system (PTS). The apparent role of the enzyme is to participate in arabitol catabolism via the arabitol phosphate route similar to the ribitol and xylitol catabolic routes described previously. Xylitol phosphate dehydrogenase (XPDH) was isolated from Lactobacillus rhamnosus strain ATCC 15820. The enzyme was partially sequenced. Amino acid sequences were used to isolate the gene encoding the enzyme. The homology comparisons of the deduced amino acid sequence of L. rhamnosus XPDH revealed several similar enzymes in genomes of various species of Gram-positive bacteria. Two enzymes of Clostridium difficile and an enzyme of Bacillus halodurans were cloned and their substrate specificities together with the substrate specificity of L. rhamnosus XPDH were compared. It was found that one of the XPDH enzymes of C. difficile and the XPDH of L. rhamnosus had the highest selectivity towards D-xylulose 5-phosphate. A known transketolase-deficient and D-ribose-producing mutant of Bacillus subtilis (ATCC 31094) was further modified by disrupting its rpi (D-ribose phosphate isomerase) gene to create D-ribulose- and D-xylulose-producing strain. Expression of APDH of E. avium and XPDH of L. rhamnosus and C. difficile in D-ribulose- and D-xylulose-producing strain of B. subtilis resulted in strains capable of converting D-glucose into D-arabitol and xylitol, respectively. The D-arabitol yield on D-glucose was 38 % (w/w). Xylitol production was accompanied by co-production of ribitol limiting xylitol yield to 23 %.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work covered in this thesis is focused on the development of technology for bioconversion of glucose into D-erythorbic acid (D-EA) and 5-ketogluconic acid (5-KGA). The task was to show on proof-of-concept level the functionality of the enzymatic conversion or one-step bioconversion of glucose to these acids. The feasibility of both studies to be further developed for production processes was also evaluated. The glucose - D-EA bioconversion study was based on the use of a cloned gene encoding a D-EA forming soluble flavoprotein, D-gluconolactone oxidase (GLO). GLO was purified from Penicillium cyaneo-fulvum and partially sequenced. The peptide sequences obtained were used to isolate a cDNA clone encoding the enzyme. The cloned gene (GenBank accession no. AY576053) is homologous to the other known eukaryotic lactone oxidases and also to some putative prokaryotic lactone oxidases. Analysis of the deduced protein sequence of GLO indicated the presence of a typical secretion signal sequence at the N-terminus of the enzyme. No other targeting/anchoring signals were found, suggesting that GLO is the first known lactone oxidase that is secreted rather than targeted to the membranes of the endoplasmic reticulum or mitochondria. Experimental evidence supports this analysis, as near complete secretion of GLO was observed in two different yeast expression systems. Highest expression levels of GLO were obtained using Pichia pastoris as an expression host. Recombinant GLO was characterised and the suitability of purified GLO for the production of D-EA was studied. Immobilised GLO was found to be rapidly inactivated during D-EA production. The feasibility of in vivo glucose - D-EA conversion using a P. pastoris strain co-expressing the genes of GLO and glucose oxidase (GOD, E.C. 1.1.3.4) of A. niger was demonstrated. The glucose - 5-KGA bioconversion study followed a similar strategy to that used in the D-EA production research. The rationale was based on the use of a cloned gene encoding a membrane-bound pyrroloquinoline quinone (PQQ)-dependent gluconate 5-dehydrogenase (GA 5-DH). GA 5-DH was purified to homogeneity from the only source of this enzyme known in literature, Gluconobacter suboxydans, and partially sequenced. Using the amino acid sequence information, the GA 5-DH gene was cloned from a genomic library of G. suboxydans. The cloned gene was sequenced (GenBank accession no. AJ577472) and found to be an operon of two adjacent genes encoding two subunits of GA 5-DH. It turned out that GA 5-DH is a rather close homologue of a sorbitol dehydrogenase from another G. suboxydans strain. It was also found that GA 5-DH has significant polyol dehydrogenase activity. The G. suboxydans GA 5-DH gene was poorly expressed in E. coli. Under optimised conditions maximum expression levels of GA 5-DH did not exceed the levels found in wild-type G. suboxydans. Attempts to increase expression levels resulted in repression of growth and extensive cell lysis. However, the expression levels were sufficient to demonstrate the possibility of bioconversion of glucose and gluconate into 5-KGA using recombinant strains of E. coli. An uncharacterised homologue of GA 5-DH was identified in Xanthomonas campestris using in silico screening. This enzyme encoded by chromosomal locus NP_636946 was found by a sequencing project of X. campestris and named as a hypothetical glucose dehydrogenase. The gene encoding this uncharacterised enzyme was cloned, expressed in E. coli and found to encode a gluconate/polyol dehydrogenase without glucose dehydrogenase activity. Moreover, the X. campestris GA 5-DH gene was expressed in E. coli at nearly 30 times higher levels than the G. suboxydans GA 5-DH gene. Good expressability of the X. campestris GA-5DH gene makes it a valuable tool not only for 5-KGA production in the tartaric acid (TA) bioprocess, but possibly also for other bioprocesses (e.g. oxidation of sorbitol into L-sorbose). In addition to glucose - 5-KGA bioconversion, a preliminary study of the feasibility of enzymatic conversion of 5-KGA into TA was carried out. Here, the efficacy of the first step of a prospective two-step conversion route including a transketolase and a dehydrogenase was confirmed. It was found that transketolase convert 5-KGA into TA semialdehyde. A candidate for the second step was suggested to be succinic dehydrogenase, but this was not tested. The analysis of the two subprojects indicated that bioconversion of glucose to TA using X. campestris GA 5-DH should be prioritised first and the process development efforts in future should be focused on development of more efficient GA 5-DH production strains by screening a more suitable production host and by protein engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rates of oxidation of p-xylene were measured in the temperature range 320 to 420 °C using tin vanadate as catalyst in an isothermal differential flow reactor. The amounts of p-xylene converted were determined by analyzing the main products (p-tolualdehyde, maleic anhydride, p-toluic acid and traces of terephthalic acid). Negligible amounts of products of complete combustion were formed. The reaction rates obtained for p-xylene followed the relation, Image based on the redox model. The mechanism of the reaction was determined by conducting different sets of experiments and it was found that the reaction followed the parallel-consecutive mechanism, in which p-tolualdehyde and maleic anhydride were formed from the parallel route whereas p-toluic acid was formed from the consecutive route.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The equal-channel angular extrusion (ECAE) of Ti-bearing interstitial-free (IF) steel was performed following two different routes, up to four passes, at a temperature of 300 degrees C. The ECAE led to a grain refinement to submicron size. After the second pass, the grain size attained saturation thereafter. The microstructural analysis indicated the presence of coincident-site lattice (CSL) boundaries in significant fraction, in addition to a high volume fraction of high-angle random boundaries and some low-angle boundaries after the deformation. Among the special boundaries, Sigma 3 and Sigma 13 were the most prominent ones and their fraction depended on the processing route followed. A deviation in the misorientation angle distribution from the Mackenzie distribution was noticed. The crystallographic texture after the first pass resembled that of simple shear, with the {112}, {110}, and {123} aligned to the macroscopic shear plane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study analyses the traffic of Hsp150 fusion proteins through the endoplasmic reticulum (ER) of yeast cells, from their post-translational translocation and folding to their exit from the ER via a selective COPI-independent pathway. The reporter proteins used in the present work are: Hsp150p, an O-glycosylated natural secretory protein of Saccharomyces cerevisiae, as well as fusion proteins consisting of a fragment of Hsp150 that facilitates in the yeast ER proper folding of heterologous proteins fused to it. It is thought that newly synthesized polypeptides are kept in an unfolded form by cytosolic chaperones to facilitate the post-translational translocation across the ER membrane. However, beta-lactamase, fused to the Hsp150 fragment, folds in the cytosol into bioactive conformation. Irreversible binding of benzylpenicillin locked beta-lactamase into a globular conformation, and prevented the translocation of the fusion protein. This indicates that under normal conditions the beta-lactamase portion unfolds for translocation. Cytosolic machinery must be responsible for the unfolding. The unfolding is a prerequisite for translocation through the Sec61 channel into the lumen of the ER, where the polypeptide is again folded into a bioactive and secretion-competent conformation. Lhs1p is a member of the Hsp70 family, which functions in the conformational repair of misfolded proteins in the yeast ER. It contains Hsp70 motifs, thus it has been thought to be an ATPase, like other Hsp70 members. In order to understand its activity, authentic Lhs1p and its recombinant forms expressed in E. coli, were purified. However, no ATPase activity of Lhs1p could be detected. Nor could physical interaction between Lhs1p and activators of the ER Hsp70 chaperone Kar2p, such as the J-domain proteins Sec63p, Scj1p, and Jem1p and the nucleotide exchange factor Sil1p, be demonstrated. The domain structure of Lhs1p was modelled, and found to consist of an ATPase-like domain, a domain resembling the peptide-binding domain (PBD) of Hsp70 proteins, and a C-terminal extension. Crosslinking experiments showed that Lhs1p and Kar2p interact. The interacting domains were the C-terminal extension of Lhs1p and the ATPase domain of Kar2p, and this interaction was independent of ATPase activity of Kar2p. A model is presented where the C-terminal part of Lhs1p forms a Bag-like 3 helices bundle that might serve in the nucleotide exchange function for Kar2p in translocation and folding of secretory proteins in the ER. Exit of secretory proteins in COPII-coated vesicles is believed to be dependent of retrograde transport from the Golgi to the ER in COPI-coated vesicles. It is thought that receptors escaping to the Golgi must be recycled back to the ER exit sites to recruit cargo proteins. We found that Hsp150 leaves the ER even in the absence of functional COPI-traffic from the Golgi to the ER. Thus, an alternative, COPI-independent ER exit pathway must exists, and Hsp150 is recruited to this route. The region containing the signature guiding Hsp150 to this alternative pathway was mapped.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metal-free CNTs exhibit high activity (conversion rate 99.6%, 6 h) towards the synthesis of chiral hydrobenzoin from benzaldehyde under near-UV light irradiation (320–400 nm). The CNT structure before and after the reaction, the interaction between the molecule and the CNT surface, the intermediate products, the substitution effect and the influence of light on the reaction were examined using various techniques. A photo-excited conduction electron transfer (PECET) mechanism for the photocatalytic reduction using CNTs has been proposed. This finding provides a green photocatalytic route for the production of hydrobenzoin and highlights a potential photocatalytic application of CNTs.