922 resultados para quantum-dot
Resumo:
In the crystal structure of the title salt, C7H7Cl2N2O2+ center dot Cl-, the chloride anions participate in extensive hydrogen bonding with the aminium cations and indirectly link the molecules through multiple N+-H center dot center dot center dot Cl- salt bridges. There are two independent molecules in the asymmetric unit, related by a pseudo-inversion center. The direct intermolecular coupling is established by C-H center dot center dot center dot O, C-H center dot center dot center dot Cl and C-Cl center dot center dot center dot Cl- interactions. A rare three-center (donor bifurcated) C-H center dot center dot center dot (O,O) hydrogen bond is observed between the methylene and nitro groups, with a side-on intramolecular component of closed-ring type and a head-on intermolecular component.
Resumo:
In this thesis, the possibility of extending the Quantization Condition of Dirac for Magnetic Monopoles to noncommutative space-time is investigated. The three publications that this thesis is based on are all in direct link to this investigation. Noncommutative solitons have been found within certain noncommutative field theories, but it is not known whether they possesses only topological charge or also magnetic charge. This is a consequence of that the noncommutative topological charge need not coincide with the noncommutative magnetic charge, although they are equivalent in the commutative context. The aim of this work is to begin to fill this gap of knowledge. The method of investigation is perturbative and leaves open the question of whether a nonperturbative source for the magnetic monopole can be constructed, although some aspects of such a generalization are indicated. The main result is that while the noncommutative Aharonov-Bohm effect can be formulated in a gauge invariant way, the quantization condition of Dirac is not satisfied in the case of a perturbative source for the point-like magnetic monopole.
Resumo:
We present a simplified theoretical formulation of the thermoelectric power (TP) under magnetic quantization in quantum wells (QWs) of nonlinear optical materials on the basis of a newly formulated magneto-dispersion law. We consider the anisotropies in the effective electron masses and the spin-orbit constants within the framework of k.p formalism by incorporating the influence of the crystal field splitting. The corresponding results for III-V materials form a special case of our generalized analysis under certain limiting conditions. The TP in QWs of Bismuth, II-VI, IV-VI and stressed materials has been studied by formulating appropriate electron magneto-dispersion laws. We also address the fact that the TP exhibits composite oscillations with a varying quantizing magnetic field in QWs of n-Cd3As2, n-CdGeAs2, n-InSb, p-CdS, stressed InSb, PbTe and Bismuth. This reflects the combined signatures of magnetic and spatial quantizations of the carriers in such structures. The TP also decreases with increasing electron statistics and under the condition of non-degeneracy, all the results as derived in this paper get transformed into the well-known classical equation of TP and thus confirming the compatibility test. We have also suggested an experimental method of determining the elastic constants in such systems with arbitrary carrier energy spectra from the known value of the TP. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Random walks describe diffusion processes, where movement at every time step is restricted to only the neighboring locations. We construct a quantum random walk algorithm, based on discretization of the Dirac evolution operator inspired by staggered lattice fermions. We use it to investigate the spatial search problem, that is, to find a marked vertex on a d-dimensional hypercubic lattice. The restriction on movement hardly matters for d > 2, and scaling behavior close to Grover's optimal algorithm (which has no restriction on movement) can be achieved. Using numerical simulations, we optimize the proportionality constants of the scaling behavior, and demonstrate the approach to that for Grover's algorithm (equivalent to the mean-field theory or the d -> infinity limit). In particular, the scaling behavior for d = 3 is only about 25% higher than the optimal d -> infinity value.
Resumo:
We investigate the spatial search problem on the two-dimensional square lattice, using the Dirac evolution operator discretized according to the staggered lattice fermion formalism. d = 2 is the critical dimension for the spatial search problem, where infrared divergence of the evolution operator leads to logarithmic factors in the scaling behavior. As a result, the construction used in our accompanying article A. Patel and M. A. Rahaman, Phys. Rev. A 82, 032330 (2010)] provides an O(root N ln N) algorithm, which is not optimal. The scaling behavior can be improved to O(root N ln N) by cleverly controlling the massless Dirac evolution operator by an ancilla qubit, as proposed by Tulsi Phys. Rev. A 78, 012310 (2008)]. We reinterpret the ancilla control as introduction of an effective mass at the marked vertex, and optimize the proportionality constants of the scaling behavior of the algorithm by numerically tuning the parameters.
Resumo:
The in situ cryo-crystallization study of benzyl derivatives reveals that the molecular packing in these compounds is either through methylene (sp(3)) C-H center dot center dot center dot pi or aromatic (sp(2)) C-H center dot center dot center dot pi interactions depending on the level of acidity of the benzyl proton. These studies of low melting compounds bring out the subtle features of such weak interactions and point to the directional preferences depending on the nature (electron withdrawing, polarizability) of the neighbouring functional group.
Resumo:
We propose a compact model which predicts the channel charge density and the drain current which match quite closely with the numerical solution obtained from the Full-Band structure approach. We show that, with this compact model, the channel charge density can be predicted by taking the capacitance based on the physical oxide thickness, as opposed to C-eff, which needs to be taken when using the classical solution.
Resumo:
Six crystal structures of substituted 2-chloroquinoline derivatives have been analysed to evaluate the role of Cl atom as a self recognizing unit resulting in the formation of Cl center dot center dot center dot Cl and C-H center dot center dot center dot Cl interactions to generate supramolecular assembly in the solid state. The features of Type I and Type II geometries associated with Cl center dot center dot center dot Cl interactions have been analysed to show directional preferences leading to differences in the packing motifs in these crystal structures. C-H center dot center dot center dot Cl interactions are generated exclusively in structures depicting Type II Cl center dot center dot center dot Cl interaction have been observed in these structures.
Resumo:
In this thesis the current status and some open problems of noncommutative quantum field theory are reviewed. The introduction aims to put these theories in their proper context as a part of the larger program to model the properties of quantized space-time. Throughout the thesis, special focus is put on the role of noncommutative time and how its nonlocal nature presents us with problems. Applications in scalar field theories as well as in gauge field theories are presented. The infinite nonlocality of space-time introduced by the noncommutative coordinate operators leads to interesting structure and new physics. High energy and low energy scales are mixed, causality and unitarity are threatened and in gauge theory the tools for model building are drastically reduced. As a case study in noncommutative gauge theory, the Dirac quantization condition of magnetic monopoles is examined with the conclusion that, at least in perturbation theory, it cannot be fulfilled in noncommutative space.
Resumo:
In this paper, we focus on the performance of a nanowire field-effect transistor in the ultimate quantum capacitance limit (UQCL) (where only one subband is occupied) in the presence of interface traps (D-it), parasitic capacitance (C-L), and source/drain series resistance (R-s,R-d), using a ballistic transport model and compare the performance with its classical capacitance limit (CCL) counterpart. We discuss four different aspects relevant to the present scenario, namely: 1) gate capacitance; 2) drain-current saturation; 3) subthreshold slope; and 4) scaling performance. To gain physical insights into these effects, we also develop a set of semianalytical equations. The key observations are as follows: 1) A strongly energy-quantized nanowire shows nonmonotonic multiple-peak C-V characteristics due to discrete contributions from individual subbands; 2) the ballistic drain current saturates better in the UQCL than in the CCL, both in the presence and absence of D-it and R-s,R-d; 3) the subthreshold slope does not suffer any relative degradation in the UQCL compared to the CCL, even with Dit and R-s,R-d; 4) the UQCL scaling outperforms the CCL in the ideal condition; and 5) the UQCL scaling is more immune to R-s,R-d, but the presence of D-it and C-L significantly degrades the scaling advantages in the UQCL.
Resumo:
The structural characterization in crystals of three designed decapeptides containing a double D-segment at the C-terminus is described. The crystal structures of the peptides Boc-Leu-Aib-Val-Xxx-Leu-Aib-Val- (D)Ala-(D)Leu-Aib-OMe, (Xxx = Gly 2, (D)Ala 3, Aib 4) have been determined and compared with those reported earlier for peptide 1 (Xxx = Ala) and the all L analogue Boc-Leu-Aib-Val-Ala-Leu-Aib-Val-Ala-Leu-Aib-OMe, which yielded a perfect right-handed a-helical structure. Peptides 1 and 2 reveal a right-handed helical segment spanning residues 1 to 7, ending in a Schellman motif with Ala(8) functioning as the terminating residue. Polypeptide chain reversal occurs at residue 9, a novel feature that appears to be the consequence of a C-(HO)-O-... hydrogen bond between residue 4 (CH)-H-alpha and residue 9 CO groups. The structures of peptides 3 and 4, which lack the pro R hydrogen at the C-alpha atom of residue 4, are dramatically different. Peptide 3 adopts a right-handed helical conformation over the 1 to 7 segment. Residues 8 and 9 adopt at conformations forming a C-terminus type I' beta-turn, corresponding to an incipient left-handed twist of the polypeptide chain. In peptide 4, helix termination occurs at Aib(6), with residues 6 to 9 forming a left-handed helix, resulting in a structure that accommodates direct fusion of two helical segments of opposite twist. Peptides 3 and 4 provide examples of chiral residues occurring in the less favored sense of helical twist; (D)Ala(4) in peptide 3 adopts an alpha(R) conformation, while (L)Val(7) in 4 adopts an alpha(L) conformation. The structural comparison of the decapeptides reported here provides evidence for the role of specific C-(HO)-O-... hydrogen bonds in stabilizing chain reversals at helix termini, which may be relevant in aligning contiguous helical and strand segments in polypeptide structures.
Resumo:
We have derived explicitly, the large scale distribution of quantum Ohmic resistance of a disordered one-dimensional conductor. We show that in the thermodynamic limit this distribution is characterized by two independent parameters for strong disorder, leading to a two-parameter scaling theory of localization. Only in the limit of weak disorder we recover single parameter scaling, consistent with existing theoretical treatments.
Resumo:
This thesis presents ab initio studies of two kinds of physical systems, quantum dots and bosons, using two program packages of which the bosonic one has mainly been developed by the author. The implemented models, \emph{i.e.}, configuration interaction (CI) and coupled cluster (CC) take the correlated motion of the particles into account, and provide a hierarchy of computational schemes, on top of which the exact solution, within the limit of the single-particle basis set, is obtained. The theory underlying the models is presented in some detail, in order to provide insight into the approximations made and the circumstances under which they hold. Some of the computational methods are also highlighted. In the final sections the results are summarized. The CI and CC calculations on multiexciton complexes in self-assembled semiconductor quantum dots are presented and compared, along with radiative and non-radiative transition rates. Full CI calculations on quantum rings and double quantum rings are also presented. In the latter case, experimental and theoretical results from the literature are re-examined and an alternative explanation for the reported photoluminescence spectra is found. The boson program is first applied on a fictitious model system consisting of bosonic electrons in a central Coulomb field for which CI at the singles and doubles level is found to account for almost all of the correlation energy. Finally, the boson program is employed to study Bose-Einstein condensates confined in different anisotropic trap potentials. The effects of the anisotropy on the relative correlation energy is examined, as well as the effect of varying the interaction potential.}
Resumo:
In this work a physically based analytical quantum threshold voltage model for the triple gate long channel metal oxide semiconductor field effect transistor is developed The proposed model is based on the analytical solution of two-dimensional Poisson and two-dimensional Schrodinger equation Proposed model is extended for short channel devices by including semi-empirical correction The impact of effective mass variation with film thicknesses is also discussed using the proposed model All models are fully validated against the professional numerical device simulator for a wide range of device geometries (C) 2010 Elsevier Ltd All rights reserved
Resumo:
The problem of expressing a general dynamical variable in quantum mechanics as a function of a primitive set of operators is studied from several points of view. In the context of the Heisenberg commutation relation, the Weyl representation for operators and a new Fourier-Mellin representation are related to the Heisenberg group and the groupSL(2,R) respectively. The description of unitary transformations via generating functions is analysed in detail. The relation between functions and ordered functions of noncommuting operators is discussed, and results closely paralleling classical results are obtained.