963 resultados para mechanics of breathing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This essay is a trial on giving some mathematical ideas about the concept of biological complexity, trying to explore four different attributes considered to be essential to characterize a complex system in a biological context: decomposition, heterogeneous assembly, self-organization, and adequacy. It is a theoretical and speculative approach, opening some possibilities to further numerical and experimental work, illustrated by references to several researches that applied the concepts presented here. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transmission and switching in digital telecommunication networks require distribution of precise time signals among the nodes. Commercial systems usually adopt a master-slave (MS) clock distribution strategy building slave nodes with phase-locked loop (PLL) circuits. PLLs are responsible for synchronizing their local oscillations with signals from master nodes, providing reliable clocks in all nodes. The dynamics of a PLL is described by an ordinary nonlinear differential equation, with order one plus the order of its internal linear low-pass filter. Second-order loops are commonly used because their synchronous state is asymptotically stable and the lock-in range and design parameters are expressed by a linear equivalent system [Gardner FM. Phaselock techniques. New York: John Wiley & Sons: 1979]. In spite of being simple and robust, second-order PLLs frequently present double-frequency terms in PD output and it is very difficult to adapt a first-order filter in order to cut off these components [Piqueira JRC, Monteiro LHA. Considering second-harmonic terms in the operation of the phase detector for second order phase-locked loop. IEEE Trans Circuits Syst [2003;50(6):805-9; Piqueira JRC, Monteiro LHA. All-pole phase-locked loops: calculating lock-in range by using Evan`s root-locus. Int J Control 2006;79(7):822-9]. Consequently, higher-order filters are used, resulting in nonlinear loops with order greater than 2. Such systems, due to high order and nonlinear terms, depending on parameters combinations, can present some undesirable behaviors, resulting from bifurcations, as error oscillation and chaos, decreasing synchronization ranges. In this work, we consider a second-order Sallen-Key loop filter [van Valkenburg ME. Analog filter design. New York: Holt, Rinehart & Winston; 1982] implying a third order PLL The resulting lock-in range of the third-order PLL is determined by two bifurcation conditions: a saddle-node and a Hopf. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the network random generation models from Gustedt (2009)[23], we simulate and analyze several characteristics (such as the number of components, the degree distribution and the clustering coefficient) of the generated networks. This is done for a variety of distributions (fixed value, Bernoulli, Poisson, binomial) that are used to control the parameters of the generation process. These parameters are in particular the size of newly appearing sets of objects, the number of contexts in which new elements appear initially, the number of objects that are shared with `parent` contexts, and, the time period inside which a context may serve as a parent context (aging). The results show that these models allow to fine-tune the generation process such that the graphs adopt properties as can be found in real world graphs. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a series of two-dimensional plane-strain finite element analyses was conducted to further understand the stress distribution during tensile tests on coated systems. Besides the film and the substrate, the finite element model also considered a number of cracks perpendicular to the film/substrate interface. Different from analyses commonly found in the literature, the mechanical behavior of both film and substrate was considered elastic-perfectly plastic in part of the analyses. Together with the film yield stress and the number of film cracks, other variables that were considered were crack tip geometry, the distance between two consecutive cracks and the presence of an interlayer. The analysis was based on the normal stresses parallel to the loading axis (sigma(xx)), which are responsible for cohesive failures that are observed in the film during this type of test. Results indicated that some configurations studied in this work have significantly reduced the value of sigma(xx) at the film/substrate interface and close to the pre-defined crack tips. Furthermore, in all the cases studied the values of sigma(xx) were systematically larger at the film/substrate interface than at the film surface. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new concept and a preliminary study for a monocolumn floating unit are introduced, aimed at exploring and producing oil in ultradeep waters. This platform, which combines two relevant features-great oil storage capacity and dry tree production capability-comprises two bodies with relatively independent heave motions between them. A parametric model is used to define the main design characteristics of the floating units. A set of design alternatives is generated using this procedure. These solutions are evaluated in terms of stability requirements and dynamic response. A mathematical model is developed to estimate the first order heave and pitch motions of the platform. Experimental tests are carried out in order to calibrate this model. The response of each body alone is estimated numerically using the WAMIT (R) code. This paper also includes a preliminary study on the platform mooring system and appendages. The study of the heave plates presents the gain, in terms of decreasing the motions, achieved by the introduction of the appropriate appendages to the platform. [DOI: 10.1115/1.4001429]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents a number of numerical simulations of the transverse vibrations of two (or one) imbalanced rotors forced by an electric motor with limited power supply, during the passage through of the two resonance zones (increasing and decreasing input voltages). The predominant presence of the Sommerfeld effect. when the rotational velocity of the motor is captured, in the second resonance frequency is demonstrated. We have shown that the hysteretic jump phenomenon exists in a rotor system with two (or one) disks, and with this, we have shown that a torque is influenced by the dynamical behavior of die rotor [DOI: 10.1115/1.3007979]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper provides insights into liquid free water dynamics in wood vessels based on Lattice Boltzmann experiments. The anatomy of real wood samples was reconstructed from systematic 3-D analyses of the vessel contours derived from successive microscopic images. This virtual vascular system was then used to supply fluid-solid boundary conditions to a two-phase Lattice Boltzmann scheme and investigate capillary invasion of this hydrophilic porous medium. Behavior of the liquid phase was strongly dependent on anatomical features, especially vessel bifurcations and reconnections. Various parameters were examined in numerical experiments with ideal vessel bifurcations, to clarify our interpretation of these features. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experiment was implemented to study fluid flow in a pressure media. This procedure successfully combines nuclear magnetic resonance imaging with a pressure membrane chamber in order to visualize the non-wetting and wetting fluid flows with controlled boundary conditions. A specially designed pressure membrane chamber, made of non-magnetic materials and able to withstand 4 MPa, was designed and built for this purpose. These two techniques were applied to the drainage of Douglas fir sapwood. In the study of the longitudinal flow, narrow drainage fingers are formed in the latewood zones. They follow the longitudinal direction of wood and spread throughout the sample length. These fingers then enlarge in the cross-section plane and coalesce until drainage reaches the whole latewood part. At the end of the experiments, when the drainage of liquid water in latewood is completed, just a few sites of percolation appear in earlywood zones. This difference is a result of the wood anatomical structure, where pits, the apertures that allow the sap to flow between wood cells, are more easily aspirated in earlywood than in latewood. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the protein folding problem, solvent-mediated forces are commonly represented by intra-chain pairwise contact energy. Although this approximation has proven to be useful in several circumstances, it is limited in some other aspects of the problem. Here we show that it is possible to achieve two models to represent the chain-solvent system. one of them with implicit and other with explicit solvent, such that both reproduce the same thermodynamic results. Firstly, lattice models treated by analytical methods, were used to show that the implicit and explicitly representation of solvent effects can be energetically equivalent only if local solvent properties are time and spatially invariant. Following, applying the same reasoning Used for the lattice models, two inter-consistent Monte Carlo off-lattice models for implicit and explicit solvent are constructed, being that now in the latter the solvent properties are allowed to fluctuate. Then, it is shown that the chain configurational evolution as well as the globule equilibrium conformation are significantly distinct for implicit and explicit solvent systems. Actually, strongly contrasting with the implicit solvent version, the explicit solvent model predicts: (i) a malleable globule, in agreement with the estimated large protein-volume fluctuations; (ii) thermal conformational stability, resembling the conformational hear resistance of globular proteins, in which radii of gyration are practically insensitive to thermal effects over a relatively wide range of temperatures; and (iii) smaller radii of gyration at higher temperatures, indicating that the chain conformational entropy in the unfolded state is significantly smaller than that estimated from random coil configurations. Finally, we comment on the meaning of these results with respect to the understanding of the folding process. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate analytically the first and the second law characteristics of fully developed forced convection inside a porous-saturated duct of rectangular cross-section. The Darcy-Brinkman flow model is employed. Three different types of thermal boundary conditions are examined. Expressions for the Nusselt number, the Bejan number, and the dimensionless entropy generation rate are presented in terms of the system parameters. The conclusions of this analytical study will make it possible to compare, evaluate, and optimize alternative rectangular duct design options in terms of heat transfer, pressure drop, and entropy generation. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rupture of a light cellophane diaphragm in an expansion tube has been studied by an optical method. The influence of the light diaphragm on test flow generation has long been recognised, however the diaphragm rupture mechanism is less well known. It has been previously postulated that the diaphragm ruptures around its periphery due to the dynamic pressure loading of the shock wave, with the diaphragm material at some stage being removed from the flow to allow the shock to accelerate to the measured speeds downstream. The images obtained in this series of experiments are the first to show the mechanism of diaphragm rupture and mass removal in an expansion tube. A light diaphragm was impulsively loaded via a shock wave and a series of images was recorded holographically throughout the rupture process, showing gradual destruction of the diaphragm. Features such as the diaphragm material, the interface between gases, and a reflected shock were clearly visualised. Both qualitative and quantitative aspects of the rupture dynamics were derived from the images and compared with existing one-dimensional theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Classical mechanics is formulated in complex Hilbert space with the introduction of a commutative product of operators, an antisymmetric bracket and a quasidensity operator that is not positive definite. These are analogues of the star product, the Moyal bracket, and the Wigner function in the phase space formulation of quantum mechanics. Quantum mechanics is then viewed as a limiting form of classical mechanics, as Planck's constant approaches zero, rather than the other way around. The forms of semiquantum approximations to classical mechanics, analogous to semiclassical approximations to quantum mechanics, are indicated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the usual formulation of quantum mechanics, groups of automorphisms of quantum states have ray representations by unitary and antiunitary operators on complex Hilbert space, in accordance with Wigner's theorem. In the phase-space formulation, they have real, true unitary representations in the space of square-integrable functions on phase space. Each such phase-space representation is a Weyl–Wigner product of the corresponding Hilbert space representation with its contragredient, and these can be recovered by 'factorizing' the Weyl–Wigner product. However, not every real, unitary representation on phase space corresponds to a group of automorphisms, so not every such representation is in the form of a Weyl–Wigner product and can be factorized. The conditions under which this is possible are examined. Examples are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A hydraulic jump is characterized by strong energy dissipation and mixing, large-scale turbulence, air entrainment, waves and spray. Despite recent pertinent studies, the interaction between air bubbles diffusion and momentum transfer is not completely understood. The objective of this paper is to present experimental results from new measurements performed in rectangular horizontal flume with partially-developed inflow conditions. The vertical distributions of void fraction and air bubbles count rate were recorded for inflow Froude number Fr1 in the range from 5.2 to 14.3. Rapid detrainment process was observed near the jump toe, whereas the structure of the air diffusion layer was clearly observed over longer distances. These new data were compared with previous data generally collected at lower Froude numbers. The comparison demonstrated that, at a fixed distance from the jump toe, the maximum void fraction Cmax increases with the increasing Fr1. The vertical locations of the maximum void fraction and bubble count rate were consistent with previous studies. Finally, an empirical correlation between the upper boundary of the air diffusion layer and the distance from the impingement point was provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study describes the pedagogical impact of real-world experimental projects undertaken as part of an advanced undergraduate Fluid Mechanics subject at an Australian university. The projects have been organised to complement traditional lectures and introduce students to the challenges of professional design, physical modelling, data collection and analysis. The physical model studies combine experimental, analytical and numerical work in order to develop students’ abilities to tackle real-world problems. A first study illustrates the differences between ideal and real fluid flow force predictions based upon model tests of buildings in a large size wind tunnel used for research and professional testing. A second study introduces the complexity arising from unsteady non-uniform wave loading on a sheltered pile. The teaching initiative is supported by feedback from undergraduate students. The pedagogy of the course and projects is discussed with reference to experiential, project-based and collaborative learning. The practical work complements traditional lectures and tutorials, and provides opportunities which cannot be learnt in the classroom, real or virtual. Student feedback demonstrates a strong interest for the project phases of the course. This was associated with greater motivation for the course, leading in turn to lower failure rates. In terms of learning outcomes, the primary aim is to enable students to deliver a professional report as the final product, where physical model data are compared to ideal-fluid flow calculations and real-fluid flow analyses. Thus the students are exposed to a professional design approach involving a high level of expertise in fluid mechanics, with sufficient academic guidance to achieve carefully defined learning goals, while retaining sufficient flexibility for students to construct there own learning goals. The overall pedagogy is a blend of problem-based and project-based learning, which reflects academic research and professional practice. The assessment is a mix of peer-assessed oral presentations and written reports that aims to maximise student reflection and development. Student feedback indicated a strong motivation for courses that include a well-designed project component.