976 resultados para expression vector


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a generic method/model for multi-objective design optimization of laminated composite components, based on vector evaluated particle swarm optimization (VEPSO) algorithm. VEPSO is a novel, co-evolutionary multi-objective variant of the popular particle swarm optimization algorithm (PSO). In the current work a modified version of VEPSO algorithm for discrete variables has been developed and implemented successfully for the, multi-objective design optimization of composites. The problem is formulated with multiple objectives of minimizing weight and the total cost of the composite component to achieve a specified strength. The primary optimization variables are - the number of layers, its stacking sequence (the orientation of the layers) and thickness of each layer. The classical lamination theory is utilized to determine the stresses in the component and the design is evaluated based on three failure criteria; failure mechanism based failure criteria, Maximum stress failure criteria and the Tsai-Wu failure criteria. The optimization method is validated for a number of different loading configurations - uniaxial, biaxial and bending loads. The design optimization has been carried for both variable stacking sequences, as well fixed standard stacking schemes and a comparative study of the different design configurations evolved has been presented. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the challenges of flood mapping using multispectral images. Quantitative flood mapping is critical for flood damage assessment and management. Remote sensing images obtained from various satellite or airborne sensors provide valuable data for this application, from which the information on the extent of flood can be extracted. However the great challenge involved in the data interpretation is to achieve more reliable flood extent mapping including both the fully inundated areas and the 'wet' areas where trees and houses are partly covered by water. This is a typical combined pure pixel and mixed pixel problem. In this paper, an extended Support Vector Machines method for spectral unmixing developed recently has been applied to generate an integrated map showing both pure pixels (fully inundated areas) and mixed pixels (trees and houses partly covered by water). The outputs were compared with the conventional mean based linear spectral mixture model, and better performance was demonstrated with a subset of Landsat ETM+ data recorded at the Daly River Basin, NT, Australia, on 3rd March, 2008, after a flood event.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuel cells are emerging as alternate green power producers for both large power production and for use in automobiles. Hydrogen is seen as the best option as a fuel; however, hydrogen fuel cells require recirculation of unspent hydrogen. A supersonic ejector is an apt device for recirculation in the operating regimes of a hydrogen fuel cell. Optimal ejectors have to be designed to achieve best performances. The use of the vector evaluated particle swarm optimization technique to optimize supersonic ejectors with a focus on its application for hydrogen recirculation in fuel cells is presented here. Two parameters, compression ratio and efficiency, have been identified as the objective functions to be optimized. Their relation to operating and design parameters of ejector is obtained by control volume based analysis using a constant area mixing approximation. The independent parameters considered are the area ratio and the exit Mach number of the nozzle. The optimization is carried out at a particularentrainment ratio and results in a set of nondominated solutions, the Pareto front. A set of such curves can be used for choosing the optimal design parameters of the ejector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel switching sequences can be employed in spacevector-based pulsewidth modulation (PWM) of voltage source inverters. Differentswitching sequences are evaluated and compared in terms of inverter switching loss. A hybrid PWM technique named minimum switching loss PWM is proposed, which reduces the inverter switching loss compared to conventional space vector PWM (CSVPWM) and discontinuous PWM techniques at a given average switching frequency. Further, four space-vector-based hybrid PWM techniques are proposed that reduce line current distortion as well as switching loss in motor drives, compared to CSVPWM. Theoretical and experimental results are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extensible Markup Language ( XML) has emerged as a medium for interoperability over the Internet. As the number of documents published in the form of XML is increasing, there is a need for selective dissemination of XML documents based on user interests. In the proposed technique, a combination of Adaptive Genetic Algorithms and multi class Support Vector Machine ( SVM) is used to learn a user model. Based on the feedback from the users, the system automatically adapts to the user's preference and interests. The user model and a similarity metric are used for selective dissemination of a continuous stream of XML documents. Experimental evaluations performed over a wide range of XML documents, indicate that the proposed approach significantly improves the performance of the selective dissemination task, with respect to accuracy and efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most difficult operation in the flood inundation mapping using optical flood images is to separate fully inundated areas from the ‘wet’ areas where trees and houses are partly covered by water. This can be referred as a typical problem the presence of mixed pixels in the images. A number of automatic information extraction image classification algorithms have been developed over the years for flood mapping using optical remote sensing images. Most classification algorithms generally, help in selecting a pixel in a particular class label with the greatest likelihood. However, these hard classification methods often fail to generate a reliable flood inundation mapping because the presence of mixed pixels in the images. To solve the mixed pixel problem advanced image processing techniques are adopted and Linear Spectral unmixing method is one of the most popular soft classification technique used for mixed pixel analysis. The good performance of linear spectral unmixing depends on two important issues, those are, the method of selecting endmembers and the method to model the endmembers for unmixing. This paper presents an improvement in the adaptive selection of endmember subset for each pixel in spectral unmixing method for reliable flood mapping. Using a fixed set of endmembers for spectral unmixing all pixels in an entire image might cause over estimation of the endmember spectra residing in a mixed pixel and hence cause reducing the performance level of spectral unmixing. Compared to this, application of estimated adaptive subset of endmembers for each pixel can decrease the residual error in unmixing results and provide a reliable output. In this current paper, it has also been proved that this proposed method can improve the accuracy of conventional linear unmixing methods and also easy to apply. Three different linear spectral unmixing methods were applied to test the improvement in unmixing results. Experiments were conducted in three different sets of Landsat-5 TM images of three different flood events in Australia to examine the method on different flooding conditions and achieved satisfactory outcomes in flood mapping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A better performing product code vector quantization (VQ) method is proposed for coding the line spectrum frequency (LSF) parameters; the method is referred to as sequential split vector quantization (SeSVQ). The split sub-vectors of the full LSF vector are quantized in sequence and thus uses conditional distribution derived from the previous quantized sub-vectors. Unlike the traditional split vector quantization (SVQ) method, SeSVQ exploits the inter sub-vector correlation and thus provides improved rate-distortion performance, but at the expense of higher memory. We investigate the quantization performance of SeSVQ over traditional SVQ and transform domain split VQ (TrSVQ) methods. Compared to SVQ, SeSVQ saves 1 bit and nearly 3 bits, for telephone-band and wide-band speech coding applications respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At the time of restoration transmission line switching is one of the major causes, which creates transient overvoltages. Though detailed Electro Magnetic Transient studies are carried out extensively for the planning and design of transmission systems, such studies are not common in a day-today operation of power systems. However it is important for the operator to ensure during restoration of supply that peak overvoltages resulting from the switching operations are well within safe limits. This paper presents a support vector machine approach to classify the various cases of line energization in the category of safe or unsafe based upon the peak value of overvoltage at the receiving end of line. Operator can define the threshold value of voltage to assign the data pattern in either of the class. For illustration of proposed approach the power system used for switching transient peak overvoltages tests is a 400 kV equivalent system of an Indian southern gri

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gene expression noise results in protein number distributions ranging from long-tailed to Gaussian. We show how long-tailed distributions arise from a stochastic model of the constituent chemical reactions and suggest that, in conjunction with cooperative switches, they lead to more sensitive selection of a subpopulation of cells with high protein number than is possible with Gaussian distributions. Single-cell-tracking experiments are presented to validate some of the assumptions of the stochastic simulations. We also examine the effect of DNA looping on the shape of protein distributions. We further show that when switches are incorporated in the regulation of a gene via a feedback loop, the distributions can become bimodal. This might explain the bimodal distribution of certain morphogens during early embryogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Testis specific heat-shock protein 70-2 (HSP70-2), a member of HSP70 chaperone family, is essential for the growth of spermatocytes and cancer cells. We investigated the association of HSP70-2 expression with clinical behaviour and progression of urothelial carcinoma of bladder. Experimental design: We assessed the HSP70-2 expression by RT-PCR and HSP70-2 protein expression by immunofluorescence, flow cytometry, immunohistochemistry and Western blotting in urothelial carcinoma patient specimens and HTB-1, UMUC-3, HTB-9, HTB-2 and normal human urothelial cell lines. Further, to investigate the role of HSP70-2 in bladder tumour development, HSP70-2 was silenced in the high-grade invasive HTB-1 and UMUC-3 cells. The malignant properties of urothelial carcinoma cells were examined using colony formation, migration assay, invasion assay in vitro and tumour growth in vivo. Results: Our RT-PCR analysis and immunohistochemistry analysis revealed that HSP70-2 was expressed in both moderate to well-differentiated and high-grade invasive urothelial carcinoma cell lines studied and not in normal human urothelial cells. In consistence with these results, HSP70-2 expression was also observed in superficially invasive (70%) and muscle-invasive (90%) patient's tumours. Furthermore, HSP70-2 knockdown significantly suppressed cellular motility and invasion ability. An in vivo xenograft study showed that inhibition of HSP70-2 significantly suppressed tumour growth. Conclusions: In conclusion, our data suggest that the HSP70-2 expression is associated with early spread and progression of urothelial carcinoma of bladder cancer and that HSP70-2 can be the potential therapeutic target for bladder urothelial carcinoma. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A constant switching frequency current error space vector-based hysteresis controller for two-level voltage source inverter-fed induction motor (IM) drives is proposed in this study. The proposed controller is capable of driving the IM in the entire speed range extending to the six-step mode. The proposed controller uses the parabolic boundary, reported earlier, for vector selection in a sector, but uses simple, fast and self-adaptive sector identification logic for sector change detection in the entire modulation range. This new scheme detects the sector change using the change in direction of current error along the axes jA, jB and jC. Most of the previous schemes use an outer boundary for sector change detection. So the current error goes outside the boundary six times during sector change, in one cycle,, introducing additional fifth and seventh harmonic components in phase current. This may cause sixth harmonic torque pulsations in the motor and spread in the harmonic spectrum of phase voltage. The proposed new scheme detects the sector change fast and accurately eliminating the chance of introducing additional fifth and seventh harmonic components in phase current and provides harmonic spectrum of phase voltage, which exactly matches with that of constant switching frequency voltage-controlled space vector pulse width modulation (VC-SVPWM)-based two-level inverter-fed drives.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuroblastoma has successfully served as a model system for the identification of neuroectoderm-derived oncogenes. However, in spite of various efforts, only a few clinically useful prognostic markers have been found. Here, we present a framework, which integrates DNA, RNA and tissue data to identify and prioritize genetic events that represent clinically relevant new therapeutic targets and prognostic biomarkers for neuroblastoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Close to one half of the LHC events are expected to be due to elastic or inelastic diffractive scattering. Still, predictions based on extrapolations of experimental data at lower energies differ by large factors in estimating the relative rate of diffractive event categories at the LHC energies. By identifying diffractive events, detailed studies on proton structure can be carried out. The combined forward physics objects: rapidity gaps, forward multiplicity and transverse energy flows can be used to efficiently classify proton-proton collisions. Data samples recorded by the forward detectors, with a simple extension, will allow first estimates of the single diffractive (SD), double diffractive (DD), central diffractive (CD), and non-diffractive (ND) cross sections. The approach, which uses the measurement of inelastic activity in forward and central detector systems, is complementary to the detection and measurement of leading beam-like protons. In this investigation, three different multivariate analysis approaches are assessed in classifying forward physics processes at the LHC. It is shown that with gene expression programming, neural networks and support vector machines, diffraction can be efficiently identified within a large sample of simulated proton-proton scattering events. The event characteristics are visualized by using the self-organizing map algorithm.