Stochastic simulations of the origins and implications of long-tailed distributions in gene expression


Autoria(s): Krishna, Sandeep; Banerjee, Bidisha; Ramakrishnan, TV; Shivashankar, GV
Data(s)

29/03/2005

Resumo

Gene expression noise results in protein number distributions ranging from long-tailed to Gaussian. We show how long-tailed distributions arise from a stochastic model of the constituent chemical reactions and suggest that, in conjunction with cooperative switches, they lead to more sensitive selection of a subpopulation of cells with high protein number than is possible with Gaussian distributions. Single-cell-tracking experiments are presented to validate some of the assumptions of the stochastic simulations. We also examine the effect of DNA looping on the shape of protein distributions. We further show that when switches are incorporated in the regulation of a gene via a feedback loop, the distributions can become bimodal. This might explain the bimodal distribution of certain morphogens during early embryogenesis.

Formato

application/pdf

Identificador

http://eprints.iisc.ernet.in/27382/1/stockastic.pdf

Krishna, Sandeep and Banerjee, Bidisha and Ramakrishnan, TV and Shivashankar, GV (2005) Stochastic simulations of the origins and implications of long-tailed distributions in gene expression. In: Proceedings of National Academy of Science United States America, 102 (13). pp. 4771-4776.

Publicador

National Academy of Sciences

Relação

http://www.pnas.org/content/102/13/4771.abstract

http://eprints.iisc.ernet.in/27382/

Palavras-Chave #Physics
Tipo

Journal Article

PeerReviewed